gic and Design t of coder is

0

1 3 bit ADC additional ogy quickly

1

delay. An bility for it reference ents same esponse.

rk may be alog input

pehaviour

erformed

4 digital

idly.

MA and A/D Converters (Data Converters)

N-bit counter type ADC (Digital ramp type ADC)

N-bit counter type A/D converter circuit consists and in the counter type A/D converter circuit consists and circuit consists and circuit consists and circuit consists and circuit circuit circuit consists and circuit N.bit course A/D converter circuit consists of following blocks: Counter of consists of for counter (1) Comparator with variable reference voltage

(2) N.bit sequence up counter

(3) N-bit D/A converter

(4) S-R Flip-Flop

(5) AND Gate (b) Augram of an N-bit counter type ADC:

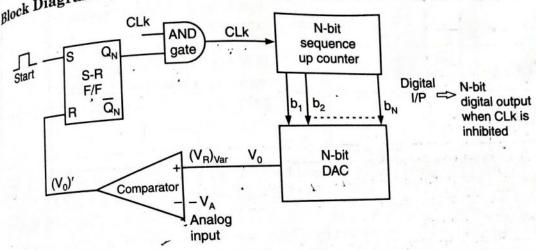


Fig. 6.29.

Operation

Initially counter is reset to zero. It means counter is initialized with value

Let's say 4 bit counter type ADC, we are going to discuss here. Hence, we i.e., 0 0 0 0. require 4-bit sequence up counter and output of counter will be:

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 & : & 0 & 0 & 0 & 0 \end{bmatrix}$$

Now $0\,0\,0\,0$ is send to 4-bit DAC and it produces 0 analog voltage by taking equation:

$$V_0 = k V_{\text{Ref}} \left[b_1 + \frac{b_2}{2} + \frac{b_3}{4} + \frac{b_4}{8} \right]$$

$$b_1 = b_2 = b_3 = b_4 = 0$$

Hence,

$$V_0 = 0 \text{ V}$$

It means variable reference voltage is equal to 0V.

How comparator works

If
$$V_A > (V_R)_{\text{Var}}$$

Then $(V_0)' = 0$
Else if $V_A \le (V_R)_{\text{Var}}$
Then $(V_0)' = 1$

Obviously if $(V_R)_{\text{Var}} = 0V$, Then $V_A > (V_R)_{\text{Var}}$ and hence $(V_0)' = 0V$. N_{ow} (V_0)' is connected to reset input of S-R flip-flop.

Digital Logic and Design

When we apply start pulse to set input of S-R flip-flop, then S = 1 and R = 1and S-R Flip-Flop is said to be in set state.

How AND gate works

	Α -	$\neg \Gamma$)—
	B -	В	Y
П	0	0	0
	0	1	0
	1	0.	0
	1	1,	1

If B = 1 Then Y = A means signal by AND gate to output terminal. Else If B = 0, Then Y = 0 means signal A is inhibited by AND

Hence, Clk signal will be passed by AND gate until and unless $Q_N = 1$. This will continue until $V_A > (V_R)_{\text{Var}}$. In this way counter will progress counting.

Now, when $V_A \leq (V_R)_{\text{Var}}$, then $Q_N = 0$. It means S-R flip-flop will be reset and Clk signal will be inhibited by AND gate, means Clk = 0 and counter action will stop means counter stops counting.

In this way conversion is complete and number stored in N-bit sequence up counter is equivalent to N-bit digital data corresponding to provided analog input voltage.

VA	b ₁ b ₂ b ₃ b	4 V ₀	$(V_R)_{Var}$	V _o '		S	R		Q_N	CLK	Counter
9V	0 0 0 0	0 V	0 V	0 V		1	Ō	(set)	1	Passed	Progress
	0 0 0 1	1 V	1 V	0 V		0	Ō		1	Passed	Progress
	0 0 1 0	2 V	2 V	0 V		0	0		1	Passed	Progress
	0 D 1 1	3 V	3 V	0 V		0	0		1	Passed	Progress
	0 1 0 0	4 V	4 V	0 V	V.>	0	0	No change		Passed	Progres
-		5 V	5 V	0 V	(V _R) _{Var}	0	0	change	1	Passed	Progress
ŀ	- 1 0	6 V	6 V	0 V		0	0		1	Passed	Progres
H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 V	7 V	0 V		0	0		1	Passed	Progress
-	100	_		οv	1	0	0		1	Passed	Progress
Ľ	0 0 1	9 V	9 7	iv	$V_{\rm A} = V_{\rm R}$	0	1		_	Inhibited	

Counter stops counting and number stored in counter is 1001 and i.e., final result.

DIA and AID Converter 4. Dual Slope A/D

Complete block

- (1) SPDT sw
- (2) Integrate
- (3) Compara (4) AND Gar
- (5) N-bit bir
- (6) T F/F

Working

SPDT switch (down position). will be pushed direction (1' pos

As initial st it), Hence, Q = 0

Integrator integrator.

In this way

 V_0 (output

 $((R_C = \tau) \text{ Time constant})$

Fig. 6.30. Block Diagram

Complete block diagram consist of following blocks:

- (1) SPDT switch (S)
- (2) Integrator
- (3) Comparator
- (4) AND Gate
- (5) N-bit binary up counter
- (6) T F/F

Working

SPDT switch (S) can be hold in two positions i.e., either 1 (Up position) or 1'(down position). It depends upon output of T flip-flop (Q). If Q = 0, then switch will be pushed upwards. If Q = 1, then switch will be pushed in downward direction (1' position).

As initial state of T flip-Flop is taken as 0 (when no Clk pulse is provided to it), Hence, Q = 0. when Q = 0, then switch S is pushed in upward position.

Integrator: In this way analog input voltage (V_A) is provided as input to integrator.

In this way—

$$V_0 \text{ (output of integrator)} = \frac{-1}{R_C} \int_0^t V_A dt$$

$$\Rightarrow V_0 = \frac{-1}{\tau} \int_0^t V_A dt$$

$$\Rightarrow V_0 = \frac{-1}{\tau} V_A \int_0^t dt$$

r=1. This nting. be reset er action

uence up d analog

ounter ogress

ogress ogress

ogress gress

gress

gress gress

gress

ng in

e.,

$$V_0 = \frac{-1}{\tau} V_A [t]_0^t$$

$$V_0 = \frac{-1}{\tau} V_A [t - 0]$$

$$V_0 = \frac{-V_A}{\tau} t$$

Comparator:

mparator:
Comparator works on two inputs i.e., V_0 applied at inverting input $termin_{[n]}$ Comparator works on two and V_r i.e., reference voltage applied at non inverting input terminal connected to ground.

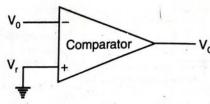
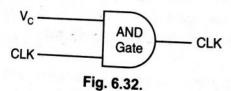


Fig. 6.31.


In comparator, we see that:

If $V_0 > 0$, then $V_C = 0$. It means if V_0 obtained is +Ve, then V_C obtained is

Else if $V_0 < 0$, then $V_C = 1$. It means if V_0 obtained is – Ve, then V_C obtained is high.

From output of integrator i.e., $V_0 = \frac{-V_A}{\tau}t$, we can see that: As $V_0 < 0$, Hence $V_C = 1$.

AND Gate:

As $V_C = 1$, hence CLK signal is simply passed by AND gate at its output terminal.

N-bit binary up counter:

Initially counter is reset i.e., b_2 b_1 $b_0 = 000$. As we have assumed 3 bit binary up counter. Hence three output terminals are taken as b_2 b_1 b_0 . As CLK signal (output of AND gate) reaches the CLK signal are taken as b_2 b_1 b_0 . (output of AND gate) reaches the CLK input of 3-bit counter. In this way counter

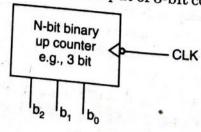


Fig. 6.33.

DIA and AID Conver progresses and inc prop 000 to 11 cleared. By table

As counter from 1 to 0, and flip-flop is - Ve transition of b2

As Q becom to lower position 111 and then r

At t_1 instan

where V is

#

As negati output of inte remains-Vepassed by Al

At t2 inst CLK signal

DA and A/D Converters (Data Converters) pogresses and incremented by 1 i.e., $b_2 b_1 b_0 = 001$. Counter will keep on counting progresses and takes 7 CLK pulses. At 8th CLK pulse, counter is again from 0 0 to 1 1 1 and takes below, we can observe how counter does not be a specific and below.

CLK	b ₂	b ₁	b_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	. 0
5	1	0	1
6	1	1	0
7	Γ^{1}	1	1 0
8	\downarrow_0	0	0

As counter takes a transition from 111 to 000, then b_2 takes a transition $_{\text{from 1}}$ to 0, and this 1 – 0 transition is acting as a CLK pulse of T flip-flop. As T flip-flop is - Ve edge triggered, hence it toggles on - Ve edge of CLK (i.e., 1 - 0 $t_{\text{transition}}$ of b_2). In this way initial Q which was 0 is now set to 1.

As Q becomes 1 and hence switch S takes a transition from upper position to lower position i.e.1' position. It takes t_1 time to progress counter from 000-111 and then recycle again to 000.

At t_1 instant, V_R is connected to integrator.

$$V_0 = \frac{-1}{\tau} \int_0^t V \ dt$$

where V is taken as generalized input passed by switch (S) to integrator.

where
$$V$$
 is taken $V_0 = \frac{-1}{\tau} \left[\int_0^{t_1} V_A dt + \int_{t_1}^t (-V_R) dt \right]$

$$V_0 = \frac{-1}{\tau} \left[V_A(t)_0^{t_1} + (-V_R)(t)_{t_1}^t \right]$$

$$V_0 = \frac{-1}{\tau} \left[V_A(t_1) - V_R(t - t_1) \right]$$

$$V_0 = \frac{-1}{\tau} V_A t_1 + \frac{V_R}{\tau} (t - t_1)$$

As negative output of integrator is now added with some + Ve value. Hence output of integrator now starts to move in positive direction. But ultimately V_0 temains V_0 temains – Ve and output of comparator i.e., $V_C = 1$ and hence CLK signal will be Passed 1. Passed by AND gate and counter will keep on doing progress.

At t_2 instant, V_0 becomes zero and starts to go in positive direction. As soon V_0 becomes zero and starts to go in positive direction. As soon V_0 becomes positive. Now output of comparator becomes 0 and in this way CLK signal will be inhibited by AND gate.

ained is

and Design

terminal onnected

btained

 $V_0 < 0$,

output

binary signal ounter 466

Digital Logic and Description Finally counter will stop counting, as it is enable to get CLK pul_{8e8}.

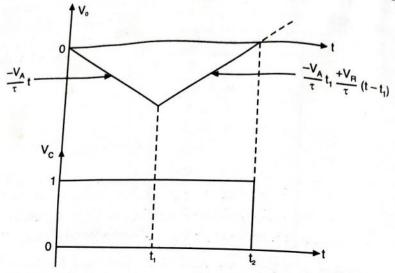


Fig. 6.34.

It we observe the CLK pulses corresponding to progress of counter, we see that

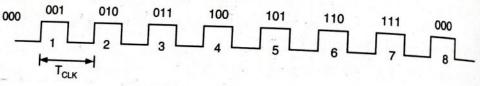


Fig. 6.35.

Total 8 CLK pulses are required to progress a counter from 001 to back 000. Time period of a single CLK pulse is assumed as T_{CLK} . So total time consumed by 8 CLK pulses is 8 T_{CLK} . This total time, we have assumed is t_1 .

$$t_1 = 8 T_{CLK}$$

For N-bit binary up counter, t_1 is given as:

$$t_1 = 2^{\mathrm{N}} \, \mathrm{T}_{\mathrm{CLK}}$$

After t_1 time, output of integrator is given as

$$V_0 = \frac{-V_A}{\tau} t_1 + \frac{V_R}{\tau} (t - t_1)$$

$$\Rightarrow 0 = \frac{-V_A}{\tau} t_1 + \frac{V_R}{\tau} (t_2 - t_1)$$

$$\Rightarrow \frac{V_R}{\tau} (t_2 - t_1) = \frac{V_A}{\tau} t_1$$

$$\Rightarrow \frac{V_R}{\tau} t_2 - \frac{V_R}{\tau} t_1 = \frac{V_A}{\tau} t_1$$

$$\Rightarrow \frac{V_R}{\tau} (t_2 - t_1) = \frac{V_A}{\tau} t_1$$

$$\Rightarrow \frac{V_R}{\tau} (t_2 - t_1) = \frac{V_A}{\tau} t_1$$

D/A and A/D Con

1

1

=

=

From this proportional t

SAMPL

Sample and h of two FET sampling swi Discharging flat top PAM. is defined as which ampli i.e. carrier instantaneo signal. Flat widely used. PAM is that transmitted top.

Working

A sampl sampled PA circuit consi The sampling the gate G_1 charged upt signal x(t). charge. The other trans discharge s waveforms DIA and A/D Converters (Data Converters)

$$t_2 - t_1 = \frac{V_A}{V_R} t_1$$

gic and Design

nter, we see

to back 000.

e consumed

 $V_0 = 0$], = 0

ulses.

t,)

$$t_2 - t_1 = \frac{V_A}{V_R} 2^n T_{CLK}$$

$$n T_{\text{CLK}} = \frac{V_A}{V_R} 2^n T_{\text{CLK}}$$

$$n = \frac{V_A}{V_R} 2^n$$

$$n = V_A|_{V_R = 2^n}$$

[Assume $t_2 - t_1 = nT_{CLK}$ where n is output of counter at t_2]

From this mathematical result, we observe that, output of counter is proportional to analog input voltage V_A under the condition $V_R = 2^n$.

6.7 SAMPLE AND HOLD CIRCUIT

Sample and hold circuit generally consists of two FET's. One FET is acting as sampling switch and 2nd FET is acting as Discharging switch. It is used to generate flat top PAM. Pulse amplitude modulation is defined as the type of modulation in which amplitudes of rectangular pulses, i.e. carrier is varied according to the instantaneous value of the modulating signal. Flat Top PAM is most popular and

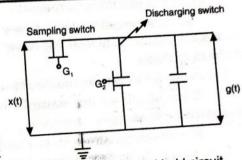


Fig. 6.36. Sample and hold circuit

PAM is that during the transmission, the noise interefers with the top of the transmitted pulses and this noise can be easily removed if the pulses has flat top.

A sample and hold circuit is shown in Fig. 6.2 is used to produce flat top sampled PAM. The working principle is simple. The sample and Hold (S/H) circuit consists of two field effect transistors (FET) switches and a capacitor. The sampling switch is closed for a short duration by a short pulse applied to the gate G_1 of the transistor. During this period, the capacitor 'C' is quickly charged. charged upto a voltage equal to the instantaneous sample value of the increasing signal x(t). Now, the sampling switch is opened and the capacitor 'C' holds the charge. The discharge switch is then closed by a pulse applied to gate G_2 of the other transfer transfer to gate G_2 of the other transfer transfer transfer to gate G_2 of the other transfer tr other transistor. Due to this, the capacitor 'C' is discharged to zero volts. The discharge switch is then opened and thus capacitor has no voltage. The waveforms is shown as figure 6.37.

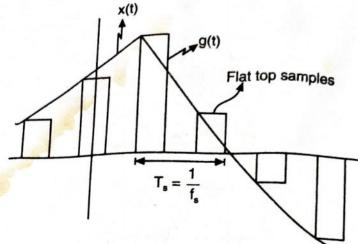


Fig. 6.37. Output waveform of sample and hold circuit

6.8 QUANTIZATION

Sometimes we have an analog signal, however we have to transmit a digital signal for a particular application.

In such cases, we need to convert: An analog signal its equivalent digital signal. It means we have to convert: A continuous time signal in the form of digits.

Now, let's take an analog signal—

First of all, we get sample of this signal according to sampling theorem.

For this purpose, we mark the time instant t_0 , t_1 , t_2 and so on at equal time intervals along ${m x}$ axis (time axis).

At each of these time instants, magnitude of signal is measured and thus samples of signals are taken.

Representation of analog signal an terms of samples in fig. 6.36.

Now, signal is defined only at the sampling instant.

Now, we can say that, the signal is no longer a continuous function of time, but rather its a discrete time signal.

But magnitude of each sample can take any value in a continuous range. Hence signal is still an analog signal.

This difficulty is resolved by a process known as quantization.

In quantization: "The total amplitude range which the signal may occupy is divided into a number of standard levels".

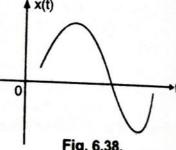


Fig. 6.38.

Fig. 6.39.

Now level.

> Sinc the infor

Amp

L interva

DIA and AID

The Wed

being nu

Max

Design

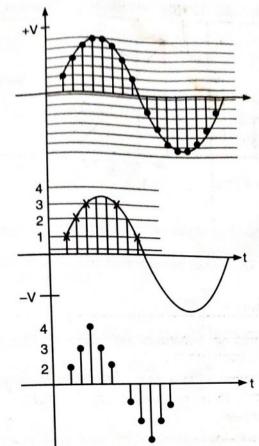


Fig. 6.40.

Amplitudes of signal x(t) lie in the range $(-m_p, m_p)$ which is partitioned into Lintervals each of magnitude $\Delta V = \frac{2m_p}{L}$.

Now each sample is approximated or rounded off to the nearest quantized

Since each sample is now approximated to one of the L numbers, therefore level. the information is digitized.

The quantized signal is an approximation of original one.

We can improve the accuracy of quantized signal to any desired degree simply being number of levels L.

$$\Delta \rightarrow \text{step size}$$

Maximum quantization error will be $\pm \frac{\Delta}{2}$

$$\Delta = \frac{m_p - (-m_p)}{L} = \frac{2m_p}{L}$$

$$\Sigma_{\text{max}} = \left| \frac{\Delta}{2} \right|$$

gital

alent the

me,

6.9. SPECIFICATIONS OF ADC (GOVERNING CHARACTERISTICS OF ADC)

6.9. SPECIFICATION

These characteristics play an important role to determine the performance of the characteristics are specified as— ADC. Characteristics are specified as-

- (1) Resolution
- (2) Input voltage range
- (3) Conversion time
- (4) Differential linearity
- (5) Accuracy
- (6) Quantization Error

(1) Resolution

Resolution of an ADC depends on the reference voltage ($V_{
m Ref}$) and the number of bits (n) in the digital output.

This is given as

Resolution =
$$\frac{V_{\text{Ref}}}{2^n}$$

e.g., 8 bit ADC works on reference voltage 5 V, find out its resolution:

$$= \frac{V_{\text{Ref}}}{2^n} = \frac{5V}{2^8} = 0.0195 \text{ V} \approx 0.02 \text{ V}$$

(2) Input Voltage Range

It is the range of voltage than an ADC can accept as its input.

(3) Conversion time

The time required by an ADC to convert an analog input value into its equivalent digital data is called as conversion time.

(4) Differential Linearity

It is an important measure of ADC performance. It is defined as a "measure of the variation in voltage step size that causes the converter to change from one state to next. It is normally expressed as a percentage of average step size. Counter type and continuous type ADCs normally have better differential linearity than successive approximation type ADCs.

If step size remains constant throughout the input range, then ADC is said to be linear.

(5) Accuracy

Since both analog and digital systems such as comparator and D/A converters are used for construction of ADC. Hence, overall accuracy of an ADC depends upon both analog and digital systems.

(6) Quantization Error

A digital error in an ADC is based on resolution of digital system. In ADC, a

continuous analog voltage is represented by an equivalent set of digital numbers. When digital numbers are converted back to analog voltage by a DAC, the output is a staircase waveform which is a discontinuous signal compared of a number of discrete steps. The smallest digital step is due to LSb and it can be made smaller only by increasing number of bits in digital representation.

This error is called as quantization error.

DIA and A/D Converte The way the re binary conversion to get a binary nur Conclusion:

4 bit successi

Similarly 8-bit su conversion time d contant number o

Advantages

 $_{-}$ Reliable

_ Capable of _Lower pov

_ High regu

Limitation

_Lower sar

_ Requirem be accurate as o

In successiv proportional to

- Data conve data.
- Digital to a data. They
- Analog to a data.
- Quantizat code modu
- Resolution output rai
- Accuracy
- Limitation of resistar
- Accuracy equivaler
- Successiv
 - Conver
- Conve Format o
- further is Range of input vo

e number

tion:

DIA and A/D Converters (Data Converters) The way the register counts is identical to the trial and fit method of decimal The way the resonance of the trial and fit method of decimal whinary conversion whereby different values of bits are tried from MSb to LSb whinary number that equals original decimal number wbinary conversament values of bits are tried post a binary number that equals original decimal number.

bit successive type ADC requires 4 conversion cycles. Conclusion: 4 bit successive type ADC requires 4 conversion cycles. Similarly 8-bit successive type ADC requires 8 conversion cycles. In this way similarly for time does not depends on amplitude of angles. Similarly 8-pit successful depends on amplitude of analog input voltage (for a conversion of bits in digital output). conversion amp

Advantages

_Reliable

_Capable of high speed

Lower power consumption

High regulation and accuracy

Limitation

_Lower sampling rates

Requirements for the building blocks (such as DAC and comparator) to be accurate as overall system.

In successive approximation type ADC, conversion time is constant and proportional to No. of bits in digital o/p unlike counter & continuous type ADC.

SUMMARY

- Data converters are used to convert one form of data to another form of
- Digital to analog converter converts digital data into its equivalent analog data. They are used to drive motors.
- Analog to digital converter converts analog data into its equivalent digital
- Quantization is a process of appropriating analog signal. It is used in pulse
- Resolution is defined as change in output voltage as a fraction of full scale
- Accuracy is predicted as percentage of maximum output voltage.
- Limitation of weighted resistor type DAC is that it requires too many values
- Accuracy is measure of effectiveness involved in conversion from analog to
- Successive approximation type A/D converter has the following advantages:
 - Conversion time is proportional to number of bits in the digital output.
- Format of Digital output is decided according to need of output which is further interfaced with any other network.
- Range of input voltage is the difference of maximum and minimum analog input voltage which can be applied to ADC.

into its

measure nge from step size. ferential

C is said

nverters depends

ADC, a umbers. AC, the red of a t can be on.