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input etc. of mainly the description of the process in-.\'()IIIL‘ codcfl mm ola Sequencg
of steps required to solve the problem in the form n! lhc‘nm‘vc func .-Am S. In Case of
universal turing machine, the process part involving & of ”‘_c ““"“L-" Machine M,
and the inputs arc expressed in the code (that is language) of the Universal lring
machine. This code of the process alongwith the code of the input, is stored iy the
memory of the UTM. And just on the lines of the conliml unit of a general Purpoge
computer the control unit of UTM, reads the codes for le‘pS: one h'l‘cp ata time,
decodes and execute the code for cach step, until the code for the final result jg
stored on the tape of UTM.

Observation 2. A Turing machine Tm designed to solve a particular problem

P can easily be specificd by
(?) The initial state say gy, of the Turing machine M.

(if) The next-move function §,, of Tm, which can be described by the ruleg of
the form : if the current state of Tm is g, and contents of cell being scanneq
are a; then the next state of Tm is q;» the symbol to be written Fn the current
cell is a; and move mof the Tape Head may be : To-left, To-right or None,

Thus, each of these rules for a particular Tm can be specified by quintupoles of
the form (q;. @;. a,. m)). And hence the next-move function dp,, for machine Tm is
completely specified by the set.

(. a.q.a.m):q,q.€ Qr :a,a,e - m.e { To-left, To-right, None]
4q; ] I @) f q; []j Tm* 5 %1 Tm> "

Observation 3. Next question that arises in the context of the construction of
universal Turing machine, is about the number of distinct states in UTM and number
of distinct inputs/tape symbols required in the UTM, so that it can solve any solvable
problem.

As UTM should be able to simulate each Turing Machine, therefore, it may
appear that number of distinct states and number of distinct tape symbols in the
UTM, should be at least as much as is possible in any Tm, because UTM may be
required to accomplish the task of any Tm. However, by proper coding techniques
we may use only two symbols to represent set of symbols.

9.12. THE HALTING PROBLEM \/TO

Let assume that we have given the description of turing machine Tm and an
input v, when started in the initial configuration ¢o> perform a computation that
eventually halts? Using an abbreviated way of talking about the problem, we ask
wheather Tm applied to w, or simply (Tm, w) halts or does not halt. The domain of
this problem is to be taken as the set of all turing machines and all w; that is, we are
looking for a single turing machine that, given the description of an arbitrary Tm
and w, will predict whether or not (he computation of Tm applied (o 1w will hall.

We can not [‘il?d the answer by si“lating the action of Tm on w, say by
performing it on universal turing machine, because there is no limit on the length of
the computation. If Tm enters an infinite loop, then no matter how long we wa'i:l. we

can never be sure that Tm 1S In fact in a loop, Iy may be simple case of very long
computation. What we need is an algorithm (hat can determine the correct answer

e

v

ing machine -
p . .

ru// m and w by performing some analysis on the machine’s description and
or ANy L But it is clear that no such algorithm exists

e inP

In short halting problem is :

mition TO determine for an arbitrary given Turing machine Tm and input w,
n . 3
“ whether Tm will eventually halt on input w. Vi

43. UNDECIDABILITY/DECIDABILITY, O
9.13

'« know that recursive languages are those languages which are accepted by
we ¢ turing machine and these sets of recursive languages are subclass of
c =)
ts, called the recursive scts.

atlcast o
regular 8¢ | N
m “A problem whose language is I'eCUl‘Sl:VE is said m. be dec!d"gl,)(‘:"t'”
Otherwise problem is undecidable. Thfl[ is, a pr‘oblem is um:)ecxda bl:::n
there exist no algorithm that takes as input an mst:fnc“e'o.fwl c p;(()) )/_
and determine whether the answer to that instance is “yes” or i

Delinltian

1. Facts about Turing-Decidable and Turing Acceptable Languages
9.13.1. Fa

1. If L is turing : .
Proof. If m decides L, then the turing machine

D)

Fig. 9.36.
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\/I'heorem 9.8. If a language L and its complement L are both recursiyel

o A ey

i ¢ nce of OrTes- | -
l G ponding problem (for shor BY'is give = lheposlcorre:v :
Y Pty tyy ey ) and v = " Vys eV Y of tg " bY two sequences s
PR . \ L TV ea v )ofg rings ; 4 . y H
enumerable, then J, (and hence ) is recursive. is to find whetherfhere isa (ﬁnile"; sequencib % S 2% The problem i
Proof. Let Tm; and T, accept. L aiid L respectively. Lc,lvus C(.n.]sm‘w[ “ l}mng (i), go o b With i€ 1,2, m} for
machine Tm which simulate Tm, and Tm, simultancously. Tm aceepts wif Tiy 12 . ‘|
accepts and rejects iy if Tm, will accept. Thus Tm will always say cither “Yeg» or =12 pso that, P> |
“No”, but never say both. Note that there is ot a priority limit on how fong it myy

take before Tm,

"i,' l’iz ui, ol = Vi Vi v, A é

. " . - H . 4 1 n i

or T, accepts, but it is certain that one or l'fb other will do so, " Equivalently, on instance of the pcp isa scquﬂencc of pairs i

i Since Tm is algorithm (hat aceepts L, if follows that L is recursive. 1 pairs i
‘ ol ()

m
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The sequence iy, i ... i, is said to be solution to this instance of PCP,

Example 9.24. Let %={0,1}. Let X and ¥ be lists of three strings each, defined

| asfollovs: |
| List X Listy
1 | i " x
i Fig. 9.41. X 1 1 111
Theorem 9.9. If L is a recursive language than X* - L is recursive. | 2 10111 10
| Proof. The required Turing machine Tm-complement can be represented by 1 3 10 0
| following diagram, |

In this'case PCP has a solution, let P = 4
i; =2,i,=1,iy=1landi =3 then

Wy W) wy ?V3 ERSRIRIRS]

] = 101111110
‘ Wes* @ |

which is the solution of instance of PCP.

nover L=

. ¢ of PCP has no solutio
Example 9.25. Prove hat following instance of PCP has n

{07 1}7 X and Y be lists of three str l.IlgS as follows :
|

Fig. 9.42.

The machine Tm-complement functions as follows :
given an input to Tm-complement, its cont
Tm,. As Tm, decides the language L, ther
moves, Tm; outputs “Yes”
“No”.

Similarly for W g L, Tm,
Tm-complement for 3*

when a string W e Y* js
rol passes the string to Tm, as input to

efore, for W e L after a finite number of
, which is the given as input to Tm,,

which in turn returns of PCP has solution #}, 1 »

at this instance ine beginning
Solution. Let us assume that this l":h . =011 can equal a string beginning

- e inning with
X . ing beginning W1 beglnnl S
returns “Yes”. Hence there exist a turing machine Clearly i = | since no string bes
- L. Soitis turing-dccidab]e, that is recu

01 can eqllﬂl a string
o with wy = 1
sive. with x, = 11; no string beg

J >

- Y. So for we
x3=011. - \ (he corresponding string from
9.13.6. The Post Correspondence Problem w . the string from list X the
: Ve write th & .
The post correspondence problem 1s another undecidable problem that turns have 10
out to be a very helpful tool for proving problems in logic or in formal language /
theory to be undecidable. 101
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=3. Buti, =
The next selection from X must begin with a 1. Thus p=lori= begi 12 l
will not do, since no string beginning with Wyow = 1010 can equal a string nning

with x, x, = 101101. with I, =3 we have
10101

101011

Since the string from list ¥ again exceeds the string from list X by the single
symbol 1, a similar argument shows that iy = iy = ... = 3. Thus there is only one
sequence of choices that generates compatible strings, and for this sequence string
Y is always one character longer. Thus this instance of PCP has no solution.

Example 9.26. Find the solution of following instance of PCP

abab aaabbb )\ ( aab ba ab) [aa -
ababaaa || bb | baab || baa || ba | | a
Solution. The solution for this instance is

i1=1,iy=2,i,=3,i,=4,i,=5,ig=5,i,=6

- ababaaabbbaabbaababaa = ababaaabbbaabbaababaa.



