Example 6.11. Consider the following grammar

 $S \rightarrow a/Xb/aYa$

 $X \rightarrow Y/\in$

 $Y \rightarrow b/X$

eliminate \in -productions.

Solution. Here $X \to \in$ is \in -productions. So this problem can also solved in $\sup_{x \in \mathbb{R}} |x| = 1$ fashion and grammar without \in -productions will be

$$S \rightarrow a/Xb/aYa/b/aa$$

$$X \rightarrow Y$$

$$Y \rightarrow b/X$$
.

Example 6.12. Design a CFG for regular expression

 $r = (a + b)^* bb (a + b)^*$, which is free from \in -productions.

Solution. Let CFG G be required context free grammar with \in -productions

$$S \rightarrow XY$$

 $X \rightarrow Zb$

 $Y \rightarrow bW$

 $Z \rightarrow AB$

 $W \to Z$

 $A \rightarrow aA/bA/\in$

 $B \rightarrow Ba/Bb/\in$

Finally here $A \rightarrow \in$ and $B \rightarrow \in$ are \in -productions and A, B are nullable non-terminals.

The CFG without \in -production can be achieved from G in similar fashion, as above discussed. Let it be G', then G' is

$$S \rightarrow XY$$

 $X \rightarrow Zb/b$

 $Y \rightarrow bW/b$

 $Z \rightarrow AB/A/B$

 $W \rightarrow Z$

 $A \rightarrow aA/bA/a/b$

 $B \rightarrow Ba/Bb/a/b$

Because \in was not generated by G, the new CFG G' generates exactly the same

6.3. CHOMSKY NORMAL FORM

Definition

If a CFG has only production of the form

Non-terminals → string of exactly two non-terminals or of the form

Non-terminals → one terminal

is said to be chomsky normal form or CNF.

Conversion to Chomsky M.

6.3.1. Conversion to Chomsky Normal Form Conversion of the grammar to CNF can be understood by the following

erample" Let us conside a grammar

 $G = (\{S, A, B\}, \{a, b\}, P, S)$, where S is the start symbol and P is given by

$$S \rightarrow bA/aB$$

$$A \rightarrow bAA/aS/a$$

$$B \rightarrow aBB/bS/a$$

Now let us find an equivalent chomsky normal form of it.

As we know that right side in CNF either contains two non-terminals or one reminal. So it is clear that in the first production above, we have to replace terminal \mathfrak{F} by a non-terminal say C_b and 'a' by C_a , hence grammar becomes

$$S \rightarrow C_b A / C_a B$$

$$A \rightarrow C_b A A / C_a S / a$$

$$B \rightarrow C_a B B / C_b S / b$$

$$C_a \rightarrow a$$

$$C_b \rightarrow b$$

Now first rule is in CNF. In second rule C_bAA is not in CNF. So we can replace At by a non-terminal say D and similarly BB by E, we obtain

$$S \rightarrow C_b A / C_a B$$

$$A \rightarrow C_b D / C_a S / a$$

$$B \rightarrow C_a E / C_b S / b$$

$$C_a \rightarrow a$$

$$C_b \rightarrow b$$

$$D \rightarrow A A$$

$$E \rightarrow B B$$

The above grammar is equivalent Chomsky normal form of the given grammar.

Example 6.13. Change the following grammar in to CNF

$$S \rightarrow 1A/0B$$

$$A \rightarrow 1AA/0S/0$$

$$B \rightarrow 0BB/1$$

Solution. We know that in CNF, either two non-terminal or one terminal is on the right side.

Therefore replace AA by C_a and BB by C_b , 1 by C_1 , 0 by C_0 , we get

$$\begin{array}{l} S \rightarrow C_1 A/C_0 B \\ A \rightarrow C_1 C_a/C_0 S/0 \end{array}$$

Theory of Automata and Compulation

$$B. \rightarrow C_0 C_b / 1$$

$$C_1 \rightarrow 1$$

$$C_0 \rightarrow 0$$

$$C_a \rightarrow AA$$

$$C_b \rightarrow BB$$

while the CNF form.

Example 6.14. Change the following grammar in to CNF

$$G = (\{S\}, \{a, b, c\}, \{S \rightarrow a/b/CSS\}, S\}.$$

Solution. Here productions are

$$S \rightarrow a$$

$$S \rightarrow b$$

$$S \rightarrow CSS$$

Replace SS by D, we get

$$S \rightarrow a$$

$$S \rightarrow b$$

$$S \rightarrow CD$$

$$D \rightarrow SS$$

which is in CNF form.

Example 6.15. Change the following grammar in to CNF

$$S \rightarrow abSb/a/aAb$$

$$A \rightarrow bS/aAAb$$
.

Solution. Replace aA by B_a and Ab by B_b , we get

$$S \rightarrow abSb/a/aB_b$$

$$A \rightarrow bS/B_aB_b$$

$$B_a \rightarrow aA$$

$$B_b \to Ab$$

Now replace ab by C and Sb by D, we get

$$S \to CD/a/aB_b$$

$$A \rightarrow bS/B_aB_b$$

$$B_a \rightarrow aA$$

$$B_b \rightarrow aA$$

$$B_b \rightarrow Ab$$

$$C \rightarrow ab$$

$$D \rightarrow Sb$$

Now replace a by X_a and b by X_b , we get

$$S \to CD/a/X_aB_b$$

$$A \rightarrow X_b S/B_a B_b$$

$$B_a \rightarrow X_a A$$

$$B_b \rightarrow X_a B$$

$$C \rightarrow AX_b$$

$$D \rightarrow SX_b$$

$$X_a \rightarrow a$$

$$X_b \to b$$
.

It is required CNF form.

Example 6.16. Convert CFG which is given below in to CNF form.

$$S \rightarrow bA/aB$$

$$A \rightarrow bAA/aS/a$$

$$B \rightarrow aBB/bS/b$$
.

Solution. Let us replace b by C_b and a by C_a , then CFG becomes

$$S \rightarrow C_b A/C_a B$$

$$A \rightarrow C_b AA/C_a S/a$$

$$B \rightarrow C_a BB/C_b S/b$$

$$C_b \rightarrow b$$

$$C_a \rightarrow a$$

Now let us replace C_bA by D and C_aB by E then grammar becomes as follows:

$$S \rightarrow C_b A/C_a B$$

$$A \rightarrow DA/C_aS/a$$

$$B \to EB/C_bS/b$$

$$C_b \to b$$

$$C_a \rightarrow a$$

$$D \rightarrow C_b A$$

$$E \rightarrow C_a B$$

Now every production of the grammar is in the CNF form.

du and convert