B

9.1 PROCESS BASICS .

@process is simply an instance of'a rugning program. A process is sq
program Starts exccuti'on e?nd remains alive as long as the program is
complete, the process 1 said to dlegA process also has a name, usually
being executed. For example, wh(?n you execute the grep command, a proc
However, a process can’t be conmde_red synonymous with aprogram. Wh
program, there’s one program on disk but two processes in memory.

1d to be borp
active, After
the name of the Progray
€ss named grep j Createg
€0 tWO users rup the samé

sXecution

The kernel is responsible for the management of processes. It determines the time and prioritieg
thatare allocated to processes so that multiple processes are able to share CPU resources. It provides
a mechanism by which a process is able to execute for a finite period of time and then relinquish
control to another process. The kernel has to sometimes store pages (sections) of these processesin

the swap area of the disk before calling them again for running. All this happens more than oncea
second, making the user oblivious to the switching process.

Files have attributes and so do processes. Some attributes of every process are maintained by the
kernel in memory in a separate structure called the process table. You could say that the process
table is the inode for processes. Two important attributes of a process are:

* The Process-id (PID) Each process is uniquely identified by a unique integer C?HC?DHES
_*? Process-id (PID) thatis allotted by the kernel when the process is born. We need this P
control a process, for instance, to kill it.

* The Parent PID (PPID) The PID of the parent is also available as a process attribute. When

: than allits
several processes have the same PPID, it often makes sense to kill the parent rather
children scparately.

"

- . is in Section 9.4.
The other attributes are inherited by the child from its parent and are discussed I

. e
e ' idly, bringing the syste
Things do 80 wWrong at times. A process may go berserk and multiply ‘rapld’g’;d VOS m_;‘y P
toa complete standstil], A process may not complete in the exp.ccted ~Un'lt€}; ;he e

suspend it, move it to the background, or even kill it. UNIX provides us W1

th(: r i
Pracess l"”‘”ch)’ and also control these processes.

CamScanner



9.6 PROCESS STATES AND ZOMBIES

i¢ any instant of time, a process is in a particul

kel ar state. A process after creation is in the runnable
«tate before it actually runs (

: . stat§ running). While the process is running, it may be invoke a disk
J/O operation when 1t has nothing to do except wait for the J/O to complete, The process then
moves to the sleeping state to be woken up when the I/O operation is over. A process can also be

7 ’ 1 < ’ b . .
suspended by pressing a key (usually, /Ctri-z]). Processes whose parents don’t wait for their death
move to the zombie state.

When a process dies, it immediately moves to the zombie state. It remains in this state until the
parent picks up the child’s exit status (the reason for waiting) from the process table. When that 1s
done, the kernel frees the process table entry. A zombie is a harmless dead child but you can t kall it




UNIX;: Concepts and Applications

' s liF ‘ he child dies. The child then beco
’ ible for the parent itself to die before t ' mes gy
Ltr;ilzizisjlthee ljérneel Ir)nakes init the parent of all orphans. When this adopted child dics,
init waits for its death.

/%.7 RUNNING JOBS IN BACKGROUND

A multitasking system lets a user do more than one job at a time. Since there can be only one jOb. i
the foreground, the rest of the jobs have to run in the background. There are two ways of dmpg
this—with the shell’s & operator and the nohup command. The lgtter permits you to log out while
your jobs are running, but the former doesn’t allow that (except in the C shell and Bash).

9.7.1 & No Logging Out

The & is the shell’s operator used to run a process in the background. The parent in this cax
doesn’t wait for the child’s death. Just terminate the command line with an &; the command wil
run in the background:

$ sort -o emp.lst emp.Ist &
550

Tha L1t

The job’s PID



