

79

Advance Java
UNIT 4 ADVANCE JAVA

Structure Page Nos.

4.0 Introduction 79
4.1 Objectives 79
4.2 Java Database Connectivity 80
 4.2.1 Establishing A Connection
 4.2.2 Transactions with Database
4.3 An Overview of RMI Applications 84
 4.3.1 Remote Classes and Interfaces
 4.3.2 RMI Architecture
 4.3.3 RMI Object Hierarchy
 4.3.4 Security
4.4 Java Servlets 88
 4.4.1 Servlet Life Cycle
 4.4.2 Get and Post Methods
 4.4.3 Session Handling
4.5 Java Beans 94
4.6 Summary 97
4.7 Solutions/Answers 97

4.0 INTRODUCTION

This unit will introduce you to the advanced features of Java. To save data, you have
used the file system, which gives you functionality of accessing the data but it does
not offer any capability for querying on data conveniently.

You are familiar with various databases like Oracle, Sybase, SQL Server etc. They
do not only provide the file-processing capabilities, but also organize data in a manner
that facilitates applying queries.

Structured Query Language (SQL) is almost universally used in relational database
systems to make queries based on certain criteria. In this unit you will learn how you
can interact to a database using Java Database Connectivity (JDBC) feature of Java.

You will also learn about RMI (Remote Method Invocation) feature of Java. This will
give the notion of client/server distributed computing. RMI allows Java objects
running on the same or separate computers to communicate with one another via
remote method calls.

A request-response model of communication is essential for the highest level of
networking. The Servlets feature of Java provides functionality to extend the
capabilities of servers that host applications accessed via a request-response
programming model. In this unit we will learn the basics of Servlet programming.

Java beans are nothing but small reusable pieces of components that you can add to a
program without disturbing the existing program code, are also introduced in this unit.

4.1 OBJECTIVES

After going through of this unit you will be able to:

• interact with databases through java programs;
• use the classes and interfaces of the java.sql package;

 80

Applets Programming
and Advance Java
Concepts

• use basic database queries using Structured Query Language (SQL) in your
programs;

• explain Servlet Life Cycle;
• write simple servlets programs;
• explain the model of client/server distributed computing;
• explain architecture of RMI, and
• describe Java Beans and how they facilitate component-oriented software

construction.

4.2 JAVA DATABASE CONNECTIVITY

During programming you may need to interact with database to solve your problem.
Java provides JDBC to connect to databases and work with it. Using standard library
routines, you can open a connection to the database. Basically JDBC allows the
integration of SQL calls into a general programming environment by providing library
routines, which interface with the database. In particular, Java’s JDBC has a rich
collection of routines which makes such an interface extremely simple and intuitive.

4.2.1 Establishing A Connection

The first thing to do, of course, is to install Java, JDBC and the DBMS on the working
machines. Since you want to interface with a database, you would need a driver for
this specific database.

Load the vendor specific driver

This is very important because you have to ensure portability and code reuse. The API
should be designed as independent of the version or the vendor of a database as
possible. Since different DBMS’s have different behaviour, you need to tell the driver
manager which DBMS you wish to use, so that it can invoke the correct driver.

For example, an Oracle driver is loaded using the following code snippet:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver")

Make the connection

Once the driver is loaded and ready for a connection to be made, you may create an
instance of a Connection object using:

Connection con = DriverManager.getConnection(url, username, password);

Let us see what are these parameters passed to get Connection method of
DriverManager class. The first string is the URL for the database including the
protocol, the vendor, the driver, and the server the port number. The username and
password are the name of the user of database and password is user password.
The connection con returned in the last step is an open connection, which will be used
to pass SQL statements to the database.

Creating JDBC Statements

A JDBC Statement object is used to send the SQL statements to the DBMS. It is
entirely different from the SQL statement. A JDBC Statement object is an open
connection, and not any single SQL Statement. You can think of a JDBC Statement
object as a channel sitting on a connection, and passing one or more of the SQL
statements to the DBMS.

81

Advance Java An active connection is needed to create a Statement object. The following code is a
snippet, using our Connection object con

 Statement statmnt = con.createStatement();

At this point, you will notice that a Statement object exists, but it does not have any
SQL statement to pass on to the DBMS.

Creating JDBC PreparedStatement
PreparedStatement object is more convenient and efficient for sending SQL
statements to the DBMS. The main feature, which distinguishes PreparedStatement
object from objects of Statement class, is that it gives an SQL statement right when it
is created. This SQL statement is then sent to the DBMS right away, where it is
compiled. Thus, in effect, a PreparedStatement is associated as a channel with a
connection and a compiled SQL statement.

Another advantage offered by PreparedStatement object is that if you need to use the
same or similar query with different parameters multiple times, the statement can be
compiled and optimized by the DBMS just once. While with a normal Statement, each
use of the same SQL statement requires a compilation all over again.

PreparedStatements are also created with a Connection method. The following code
shows how to create a parameterized SQL statement with three input parameters:

 PreparedStatement prepareUpdatePrice
 = con.prepareStatement("UPDATE Employee SET emp_address =? WHERE
 emp_code =“1001” AND emp_name =?");

You can see two? symbol in the above PreparedStatement prepareUpdatePrice. This
means that you have to provide values for two variables emp_address and emp_name
in PreparedStatement before you execute it. Calling one of the setXXX methods
defined in the class PreparedStatement can provide values. Most often used methods
are setInt, setFloat, setDouble, setString, etc. You can set these values before each
execution of the prepared statement.

You can write something like:

 prepareUpdatePrice.setInt(1, 3);
 prepareUpdatePrice.setString(2, "Renuka");
 prepareUpdatePrice.setString(3, "101, Sector-8,Vasundhara, M.P");

Executing CREATE/INSERT/UPDATE Statements of SQL

Executing SQL statements in JDBC varies depending on the intention of the SQL
statement. DDL (Data Definition Language) statements such as table creation and
table alteration statements, as well as statements to update the table contents, all are
executed using the executeUpdate method. The following snippet has examples of
executeUpdate statements.

 Statement stmt = con.createStatement();
 stmt.executeUpdate("CREATE TABLE Employee " +
 "(emp_name VARCHAR2(40), emp_address VARCHAR2(40), emp_sal REAL)");
 stmt.executeUpdate("INSERT INTO Employee " +
 "VALUES ('Archana', '10,Down California', 30000");
 String sqlString = "CREATE TABLE Employee " +
 "(name VARCHAR2(40), address VARCHAR2(80), license INT)" ;
 stmt.executeUpdate(sqlString);

Since the SQL statement will not quite fit on one line on the page, you can split it into
two or more strings concatenated by a plus sign(+).
"INSERT INTO Employee" to separate it in the resulting string from "VALUES".

 82

Applets Programming
and Advance Java
Concepts

The point to note here is that the same Statement object is reused rather than to create
a new one each time.

When executeUpdate is used to call DDL statements, the return value is always zero,
while data modification statement executions will return a value greater than or equal
to zero, which is the number of tuples affected in the relation by execution of
modification statement.

While working with a PreparedStatement, you should execute such a statement by
first plugging in the values of the parameters (as you can see above), and then
invoking the executeUpdate on it. For example:

 int n = prepareUpdateEmployee.executeUpdate() ;

Executing SELECT Statements

A query is expected to return a set of tuples as the result, and not change the state of
the database. Not surprisingly, there is a corresponding method called execute Query,
which returns its results as a ResultSet object. It is a table of data representing a
database result set, which is usually generated by executing a statement that queries
the database.

A ResultSet object maintains a cursor pointing to its current row of data. Initially the
cursor is positioned before the first row. The next method moves the cursor to the next
row, and because it returns false when there are no more rows in the ResultSet object,
it can be used in a while loop to iterate through the result set. A default ResultSet
object is not updatable and has a cursor that moves forward only

In the program code given below:

 String ename,eaddress;
 float esal;

 ResultSet rs = stmt.executeQuery("SELECT * FROM Employee");
 while (rs.next()) {
 ename = rs.getString("emp_name");
 eaddress = rs.getString("emp_address");
 esal = rs.getFloat("emp_salary");
 System.out.println(ename + " address is" + eaddress + " draws salary " + esal + "
in dollars");
 }

The tuples resulting from the query are contained in the variable rs which is an
instance of ResultSet. A set is of not much use to you unless you can access each row
and the attributes in each row. The?

Now you should note that each invocation of the next method causes it to move to the
next row, if one exists and returns true, or returns false if there is no remaining row.

You can use the getXXX method of the appropriate type to retrieve the attributes of a
row. In the above program code getString and getFloat methods are used to access the
column values. One more thing you can observe that the name of the column whose
value is desired is provided as a parameter to the method.

Similarly,while working with a PreparedStatement, you can execute a query by first
plugging in the values of the parameters, and then invoking the executeQuery on it.

1. ename = rs.getString(1);
 eaddress = rs.getFloat(3);
 esal = rs.getString(2);

83

Advance Java 2. ResultSet rs = prepareUpdateEmployee.executeQuery() ;

Accessing ResultSet
Now to reach each record of the database, JDBC provides methods like getRow,
isFirst, isBeforeFirst, isLast, isAfterLas to access ResultSet.Also there are means to
make scroll-able cursors to allow free access of any row in the ResultSet. By default,
cursors scroll forward only and are read only. When creating a Statement for a
Connection, we can change the type of ResultSet to a more flexible scrolling or
updatable model:

 Statement stmt = con.createStatement
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);
 ResultSet rs = stmt.executeQuery("SELECT * FROM Sells");

The different options for types are TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE, and TYPE_SCROLL_SENSITIVE. We can choose
whether the cursor is read-only or updatable using the options
CONCUR_READ_ONLY, and CONCUR_UPDATABLE.

With the default cursor, we can scroll forward using rs.next(). With scroll-able cursors
we have more options:

 rs.absolute(3); // moves to the third tuple or row
 rs.previous(); // moves back one tuple (tuple 2)
 rs.relative(2); // moves forward two tuples (tuple 4)
 rs.relative(-3); // moves back three tuples (tuple 1)

4.2.2 Transactions with Database
When you go to some bank for deposit or withdrawal of money, you get your bank
account updated, or in other words you can say some transaction takes place.

JDBC allows SQL statements to be grouped together into a single transaction. Thus,
you can ensure the ACID (Atomicity, Consistency, Isolation, Durability) properties
using JDBC transactional features.

The Connection object performs transaction control. When a connection is created, by
default it is in the auto-commit mode. This means that each individual SQL statement
is treated as a transaction by itself, and will be committed as soon as its execution is
finished.

You can turn off auto-commit mode for an active connection with:
con.setAutoCommit(false) ;
And turn it on again if needed with:
con.setAutoCommit(true) ;
Once auto-commit is off, no SQL statements will be committed (that is, the database
will not be permanently updated) until you have explicitly told it to commit by
invoking the commit () method:
con.commit() ;

At any point before commit, you may invoke rollback () to rollback the transaction,
and restore values to the last commit point (before the attempted updates).

 Check Your Progress 1

1) How is a program written in java to access database?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 84

Applets Programming
and Advance Java
Concepts

2) What are the different kinds of drivers for JDBC?
……………………………………………………………………………………

……………………………………………………………………………………

3) Write a program code to show how you will perform commit() and rollback().
……………………………………………………………………………………

……………………………………………………………………………………

4) Read the following program assuming mytable already exists in database and
answer the questions given below:

 i. What is the use of rs.next()?
 ii. Value of which attribute will be obtained by rs.getString(3).
 iii. If the statement “Class.forName("sun.jdbc.odbc.JdbcOdbcDriver")” is

removed from the program what will happen.

import java.sql.*;
import java.io.*;
public class TestJDBC
 {
 public static void main(String[] args)
 {
 String dataSourceName = "mp";
 String dbURL = "jdbc:odbc:" + dataSourceName;
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con = DriverManager.getConnection(dbURL, "","");
 Statement s = con.createStatement();
 s.execute("insert into mytable values('AKM',20,'azn')");
 s.executeQuery("select * from mytable ");
 ResultSet rs = s.getResultSet();
 rs.next();
 String n = rs.getString(1);
 System.out.println("Name:"+ n);
 if (rs != null)
 while (rs.next())
 {
 System.out.println("Data from column_name: " + rs.getString(1));
 System.out.println("Data from column_age: " + rs.getInt(2));
 System.out.println("Data from column_address: " + rs.getString(3));
 }
 }
 catch (Exception err)
 {
 System.out.println("Error: " + err);
 }
}

4.3 AN OVERVIEW OF RMI APPLICATIONS

Many times you want to communicate between two computers. One of the examples
of this type of communication is a chatting program. How do chatting happens or two
computers communicate each other? RPC (Remote Procedure Call) is one of the ways
to perform this type of communication. In this section you will learn about RMI
(Remote Method Invocation).

85

Advance Java Java provides RMI (Remote Method Invocation), which is “a mechanism that allows
one to invoke a method on an object that exists in another address space. The other
address space could be on the same machine or a different one. The RMI mechanism
is basically an object-oriented RPC mechanism.”

RPC (Remote Procedure Call) organizes the types of messages which an application
can receive in the form of functions. Basically it is a management of streams of data
transmission.

RMI applications often comprised two separate programs: a server and a client.
A typical server application creates some remote objects, makes references to them
accessible, and waits for clients to invoke methods on these remote objects.
A typical client application gets a remote reference to one or more remote objects in
the server and then invokes methods on them.

RMI provides the mechanism by which the server and the client communicate and
pass information back and forth. Such an application is sometimes referred to as a
distributed object application.

There are three processes that participate in developing applications based on remote
method invocation.

1. The Client is the process that is invoking a method on a remote object.

2. The Server is the process that owns the remote object. The remote object is an
ordinary object in the address space of the server process.

3. The Object Registry is a name server that relates objects with names. Objects
are registered with the Object Registry. Once an object has been registered, one
can use the Object Registry to obtain access to a remote object using the name
of the object.

4.3.1 Remote Classes and Interfaces
A Remote class is one whose instances can be used remotely. An object of such
a class can be referenced in two different ways:

1. Within the address space where the object was constructed, the object is an
 ordinary object, which can be used like any other object.

2. Within other address spaces, the object can be referenced using an object handle

While there are limitations on how one can use an object handle compared to an
object, for the most part one can use object handles in the same way as an
ordinary object.

For simplicity, an instance of a Remote class is called a remote object.

A Remote class has two parts: the interface and the class itself.

The Remote interface must have the following properties:

Interface must be public.
Interface must extend the java.rmi.Remote interface. Every method in the interface
must declare that it throws java.rmi.RemoteException. Maybe other exceptions also
ought to be thrown.

The Remote class itself has the following properties:

It must implement a Remote interface.

 86

Applets Programming
and Advance Java
Concepts

It should extend the java.rmi.server.UnicastRemoteObject class. Objects of such a
class exist in the address space of the server and can be invoked remotely. While there
are other ways to define a Remote class, this is the simplest way to ensure that objects
of a class can be used as remote objects.

It can have methods that are not in its Remote interface. These can only be invoked
locally. It is not necessary for both the Client and the Server to have access to the
definition of the Remote class.

The Server requires the definition of both the Remote class and the Remote interface,
but the client only uses the Remote interface.

All of the Remote interfaces and classes should be compiled using javac. Once this
has been completed, the stubs and skeletons for the Remote interfaces should be
compiled by using the rmic stub compiler. The stub and skeleton of the example
Remote interface are compiled with the command:
rmic <filename.class>

4.3.2 RMI Architecture

It consists of three layers as given in Figure 1

1. Stub/Skeleton layer – client-side stubs and server-side skeletons.
2. Remote reference layer-invocation to single or replicated object
3. Transport layer-connection set up and management, also remote object tracking.

JAVA RMI Architecture

Server

Skeleton

Remote Reference

Transport

 Network Transport

Remote Reference

StubClient

Client

Figure 1: Java RMI Architecture

4.3.3 RMI Object Hierarchy

RemoteServer

UnicastRemoteObject

RemoteStub

RemoteObject

Figure 2:RemoteObject Hierarchy

87

Advance Java In Figure 2 above, the RMI Object Hierarchy is shown. The most general feature set
associated with RMI is found in the java.rmi.Remote interface. Abstract class
java.rmi.server.RemoteObject supports the needed modifications to the Java object
model to cope with the indirect references.

Remote Server is a base class, which encapsulates transport semantics for
RemoteObjects. Currently RMI ships with a UnicastRemoteObject(single object)

A server in RMI is a named service which is registered with the RMI registry, and
listens for remote requests. For security reasons, an application can bind or unbind
only in the registry running on the same host.

4.3.4 Security

One of the most common problems with RMI is a failure due to security constraints.
Let us see Java the security model related to RMI. A Java program may specify a
security manager that determines its security policy. A program will not have any
security manager unless one is specified. You can set the security policy by
constructing a SecurityManager object and calling the setSecurityManager method of
the System class. Certain operations require that there be a security manager. For
example, RMI will download a Serializable class from another machine only if there
is a security manager and the security manager permits the downloading of the class
from that machine. The RMISecurityManager class defines an example of a security
manager that normally permits such download. However, many Java installations
have instituted security policies that are more restrictive than the default. There are
good reasons for instituting such policies, and you should not override them
carelessly.

Creating Distributed Applications Using RMI

The following are the basic steps be followed to develop a distributed application
using RMI:

• Design and implement the components of your distributed application.
• Compile sources and generate stubs.
• Make classes network accessible.
• Start the application.

Compile Sources and Generate Stubs

This is a two-step process. In the first step you use the javac compiler to compile the
source files, which contain the implementation of the remote interfaces and
implementations, of the server classes and the client classes. In the second step you
use the rmic compiler to create stubs for the remote objects. RMI uses a remote
object’s stub class as a proxy in clients so that clients can communicate with a
particular remote object.

Make Classes Network Accessible

In this step you have to make everything: the class files associated with the remote
interfaces, stubs, and other classes that need to be downloaded to clients, accessible
via a Web server.

Start the Application

Starting the application includes running the RMI remote object registry, the server,
and the client.

 88

Applets Programming
and Advance Java
Concepts

 Check Your Progress 2

1) What is Stub in RMI?

……………………………………………………………………………………

……………………………………………………………………………………

2) What are the basic actions performed by receiver object on server side?
……………………………………………………………………………………

……………………………………………………………………………………

3) What is the need of and Registry Service of RMI?
……………………………………………………………………………………

……………………………………………………………………………………

4.4 JAVA SERVLETS

In this section you will be introduced to server side-programming. Java has utility
known as servlets for server side-programming.

A servlet is a class of Java programming language used to extend the capabilities of
servers that host applications accessed via a request-response programming model.

Although servlets can respond to any type of request, they are commonly used to
extend the applications hosted by web servers. Java Servlet technology also defines
HTTP-specific servlet classes. The javax.servlet and java.servlet.http packages
provide interfaces and classes for writing servlets. All servlets must implement the
Servlet interface, which defines life-cycle methods.

When implementing a generic service, you can use or extend the GenericServlet class
provided with the Java Servlet API. The HttpServlet class provides methods, such as
do get and do Post, for handling HTTP-specific services.

In this section we will focus on writing servlets that generate responses to HTTP
requests. Here it is assumed that you are familiar with HTTP protocol.

4.4.1 Servlet Life Cycle
The container in which the servlet has been deployed controls the life cycle of a
servlet. When a request is mapped to a servlet, the container performs the following
steps.

Loads the servlet class.
Creates an instance of the servlet class.
Initializes the servlet instance by calling the init() method.
When servlet is executed it invokes the service method, passing a request and
response object.

If the container needs to remove the servlet, it finalizes the servlet by calling the
servlet’s destroy method.

Figure 3: Interaction with Servlet

HTTP Servlet

Service
Web
Server

Browser

http://java.sun.com/webservices/docs/1.0/api/javax/servlet/GenericServlet.html

89

Advance Java Servlets are programs that run on servers, such as a web server. You all do net surfing
and well known the data on which the web is submitted and you get the respond
accordingly. On web pages the data is retrieved from the corporate databases, which
should be secure. For these kinds of operations you can use servlets.

4.4.2 GET and POST Methods

The GET methods is a request made by browsers when the user types in a URL on the
address line, follows a link from a Web page, or makes an HTML form that does not
specify a METHOD. Servlets can also very easily handle POST requests, which are
generated when someone creates an HTML form that specifies METHOD="POST".

The program code given below will give you some idea to write a servlet program:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class SomeServlet extends HttpServlet
 {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Use "request" to read incoming HTTP headers (e.g. cookies)
 // and HTML form data (e.g. data the user entered and submitted)

 // Use "response" to specify the HTTP response line and headers
 // (e.g. specifying the content type, setting cookies).
 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

To act as a servlet, a class should extend HttpServlet and override doGet or doPost (or
both), depending on whether the data is being sent by GET or by POST. These
methods take two arguments: an HttpServletRequest and an HttpServletResponse
objects.
The HttpServletRequest has methods for information about incoming information
such as FORM data, HTTP request headers etc.
The httpServletResponse has methods that let you specify the HTTP response line
(200, 404, etc.), response headers (Content-Type, Set-Cookie, etc.), and, most
importantly, a PrintWriter used to send output back to the client.

A Simple Servlet: Generating Plain Text
Here is a simple servlet that just generates plain text:
//Program file name: HelloWorld.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet
 {
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 }
 }

 90

Applets Programming
and Advance Java
Concepts

Compiling and Installing the Servlet

Note that the specific details for installing servlets vary from Web server to Web
server. Please refer to the Web server documentation for definitive directions. The on-
line examples are running on Java Web Server (JWS) 2.0, where servlets are expected
to be in a directory called servlets in the JWS installation hierarchy.

You have to set the CLASSPATH to point to the directory above the one actually
containing the servlets. You can then compile normally from within the directory.

DOS> set CLASSPATH=C:\JavaWebServer\servlets;%CLASSPATH%
DOS> cd C:\JavaWebServer\servlets\
DOS> javac HelloWorld.java

Running the Servlet

With the Java Web Server, servlets are placed in the servlets directory within the main
JWS installation directory, and are invoked via http://host/servlet/ServletName. Note
that the directory is servlets, plural, while the URL refers to servlet, singular. Other
Web servers may have slightly different conventions on where to install servlets and
how to invoke them. Most servers also let you define aliases for servlets, so that a
servlet can be invoked via http://host/any-path/any-file.html.

The Url that you will give on the explorer will be:
http://localhost:8080/servlet/HelloWorld then you will get the output as follows:

A Servlet that Generates HTML

xt as in the previous example. To do that,

 there is

//HelloWWW.java

import java.io.*;
et.*;

.*;
ends HttpServlet

ublic void doGet(HttpServletRequest request, HttpServletResponse response)

sponse.setContentType("text/html");

IC \"-//W3C//DTD HTML 4.0 " +

Most servlets generate HTML, not plain te
you need two additional steps: tell the browser that you’re sending back HTML, and
modify the println statements to build a legal Web page. First set the Content-Type
response header. In general, headers can be set via the setHeader method of
HttpServletResponse, but setting the content type is such a common task that
also a special setContentType method just for this purpose. You need to set response
headers before actually returning any of the content via the PrintWriter.
Here is an example for the same:

import javax.servl
import javax.servlet.http
public class HelloWWW ext
{
 p
 throws ServletException, IOException
 {
 re
 PrintWriter out = response.getWriter();
 out.println("<!DOCTYPE HTML PUBL
 "Transitional//EN\">\n" +
 "<HTML>\n" +

91

Advance Java E>Hello WWW</TITLE></HEAD>\n" +

W</H1>\n" +

L: http://localhost:8080/servlet/HelloWWW

 "<HEAD><TITL
 "<BODY>\n" +
 "<H1>Hello WW
 "</BODY></HTML>");
 }
}
UR
HelloWWW Output:

4.4.3 Session Handling

 is essential to track client’s requests. To perform this task, Java servlets offers two

 It is possible to save information about client state on the server using a Session

2. sible to save information on the client system using cookies.

TTP is a stateless protocol. If a client makes a series of requests on a server, HTTP

You need to maintain the state on the web for e-commerce type of applications. Just

t at

Now the question arises, for how long can you maintain the state of the same client?

here are various ways through which you maintain the state.

 Hidden Form Fields

Hidd Fields

Hidden form fields are HTTP tags that are used to store information that is invisible to

 it

act accordingly.

It
different ways:

A session is

ts,
sequence of
HTTP reques
from the same
client, over a
period of time.

1.
object
It is pos

H
provides no help whatsoever to determine if those requests originated from the same
client. There is no way in HTTP to link two separate requests to the same client.
Hence, there is no way to maintain state between client requests in HTTP.

like other software systems, web applications want and need state. The classic web
application example is the shopping cart that maintains a list of items you wish to
purchase at a web site. The shopping cart’s state is the items in the shopping baske
any given time. This state, or shopping items, needs to be maintained over a series of
client requests. HTTP alone cannot do this; it needs help.

Of course, this figure is application-dependent and brings into play the concept of a
web session. If a session is configured to last for 30 minutes, once it has expired the
client will need to start a new session. Each session requires a unique identifier that
can be used by the client.

T

•
• URL Rewriting
• Session Handling
• Cookies.

en Form

the user. In terms of session tracking, the hidden form field would be used to hold a
client’s unique session id that is passed from the client to the server on each HTTP
request. This way the server can extract the session id from the submitted form, like
does for any of form field, and use it to identify which client has made the request and

 92

Applets Programming
and Advance Java
Concepts

<input type="text" name="searchtext">
"1211xyz">

s submitted to the servlet registered with the name search, it pulls out the
from the form as follows:

est request, HttpServletResponse response)

tring theSessionId = request.getParameterValue("sessionid");
isAllowToPerformSearch(theSessionId))

...

this approach’ the search servlet gets the session id from the hidden form field and
ses it to determine whether it allows performing any more searches.

g features the
lient needs but not without cost. For hidden fields to work the client must send a

 of

 session details as part of the URL itself. You can see below how
e look at request information for our search servlet:

) http://www.archana.com/servlet/search/23434abc
 sessionid=23434abc

written at the
rver to add extra path information as embedded links in the pages we send back to

e

doGet(HttpServletRequest request, HttpServletResponse response)

tring sessionid = request.getPathInfo(); // return 2343abc from [ii]

a path information work for both GET and POST methods involved from inside
well as outside of forms with static links.

For example, using servlets you could submit the following search form:

<form method="post" action="/servlet/search">

 <input type="hidden" name="sessionid" value=
 ...
</form>

When it i
sessionid

public void doPost(HttpServletRequ
{
 ...
 S
 if(
 {

 }

 }

In
u

Hidden form fields implement the required anonymous session trackin
c
hidden form field to the server and the server must always return that same hidden
form field. This tightly coupled dependency between client requests and server
responses requires sessions involving hidden form fields to be an unbreakable chain
dynamically generated web pages. If at any point during the session the client
accesses a static page that is not point of the chain, the hidden form field is lost, and
with it the session is also lost.

URL Rewriting

URL rewriting stores
w

i) http://www.archana.com/servlet/search
ii
iii) http://www.archana.com/servlet/search?

For the original servlet [i] the URL is clean. In [ii] we have URL re-
se
the client. When the client clicks on one of these links, the search servlet will do th
following:

public void
{
 ...
 S
 ...
}
Extr
as

93

Advance Java

quest.getParameterValue("sessionid");

 hidden forms provide a means to implement anonymous session
ou are not limited to forms and you can re-

rite URLs in static documents to contain the required session information. But URL

 HttpSession object (derived from Session object) allows the servlet to solve part of
 protocol problems. After its creation a Session is available until an

explicit invalidating command is called on it (or when a default timeout occurs). The

etSession() method returns the Session related to the current HttpServletRequest.

. It is important to remember that each instance of HttpServletRequest has its own
ssion. If a Session object has not been created before, getSession() creates a

new one.

Following are the various methods related to session tracking:

ublic abstract String getId()

Technique [iii] simply re-writes the URL with parameter information that can be
accessed as follows:
re

URL re-writing, like,
tracking. However, with URL rewriting y
w
re-writing suffers from the same major disadvantage that hidden form fields do, in that
they must be dynamically generated and the chain of HTML page generation cannot
be broken.

Session object

A
the HTTP stateless

same Session object can be shared by two or more cooperating servlets. This means
each servlet can track client’s service request history.

A servlet accesses a Session using the getSession() method implemented in the
HttpServletRequest interface.
g

Note:

1

Se

2. HttpSession interface implements necessary methods to manage with a session.

p : Returns a string containing session’s name. This name
is unique and is set by HttpSessionContext().

public abstract void putValue (String Name, Object Value): Connect the object Value
to the Session object identified by Name parameter. If another object has been
onnected to the same session before, it is automatically replaced. c

public abstract Object getValue (String name): Returns the object currently held
current session. It returns a null value if no object has been connect

 by
ed before to the

ssion. se

public abstract void removeValue (String name): Remove, if existing, the object
connected to the session identified by the Name parameter.

public abstract void invalidate(): Invalidate the session.

A cookie is a
text file with a
name, a value
and a set of
attributes.

Cookies

e to save client’s state
kies. Cookies are sent from the server and saved on client’s system. On

client’s system cookies are collected and managed by the web browser. When a
g this

entification, comment.

Using JSDK (Java Servlet Development Kit) it is possibl
sending coo

cookie is sent, the server can retrieve it in a successive client’s connection. Usin
strategy it is possible to track client’s connections history.

Cookie class of Java is derives directly from the Object class. Each Cookie object
instance has some attributes like max age, version, server id

 94

Applets Programming
and Advance Java
Concepts

ublic Cookie (String Name, String Value): Cookie class' constructor. It has two
e that will identity the cookie in the future; the

econd one, Value, is a text representing the cookie value. Notice that Name parameter

ublic void setComment(Sting Comment): It is used to set cookie’s comment

ublic void setMaxAge (int MaxAge): Sets cookie’s max age in seconds. This means
dicate

e cookie has to be deleted when client’s web browser exits.

 Check Your Progress 3

vlets?
…………………………………………………

…………………………………

2)

………………………………………………………

3)

……………………………………………………………………………………

…………………………

4)

………………………………

4.5

Below are some cookie methods:

p
parameters. The first one is the nam
s
must be a "token" according to the standard defined in RFC2068 and RFC2109.

Public String getName(): Returns cookie’s name. A cookie name is set when the
cookie is created and can’t be changed.

public void setValue(String NewValue): This method can be used to set or change
cookie’s value.

public String getValue(): Returns a string containing cookie’s value.

p
attribute.

public String getComment(): Returns cookie’s comment attribute as a string.

p
client’s browser will delete the cookie in MaxAge seconds. A negative value in
th

public int getMaxAge(): Returns cookie’s max age.

1) What are the advantages of Ser

…………………………………

…………………………………………………

What is session tracking?
……………………………………………………………………………………

……………………………

What is the difference between doGet() and doPost()?

…………………………………………………………

How does HTTP Servlet handle client requests?
……………………………………………………………………………………

……………………………………………………

JAVA BEANS

Java Beans are reusable software
addition of features in the existin

 component model which allow a great flexibility and
g piece of software. You will find it very interesting

and useful to use them by linking together the components to create applets or even
new beans for reuse by others. Graphical programming and design environments often
called builder tools give a good visual support to bean programmers. The builder tool
does all the work of associating of various components together.

95

Advance Java
 maintains Beans in

a palette or toolbox. You can select a Bean from the toolbox, drop it into a form,

uilder tools

tand

Visual manipulation.

usa ts are designed to apply the power and benefit of
usab ts from other industries to the field of software

onstruction. Other industries have long profited from reusable components. Reusable
n be

acturers.

s list
s boxes etc.

A “JavaBeans-enabled” builder tool examines the Bean’s patterns, discern its features,
and exposes those features for visual manipulation. A builder tool

modify its appearance and behaviour, define its interaction with other Beans, and
compose it into applets, application, or new Bean. All this can be done without writing
a line of code.

Definition: A Java Bean is a reusable software component that can be visually
manipulated in b

To understand the precise meaning of this definition of a Bean, you must unders
the following terms:

• Software component
• Builder tool
•

Re ble software componen
re le, interchangeable par
c
electronic components are found on circuit boards. A typical part in your car ca
replaced by a component made from one of many different competing manuf
Lucrative industries are built around parts construction and supply in most
competitive fields. The idea is that standard interfaces allow for interchangeable,
reusable components.

Reusable software components can be simple like familiar push buttons, text field
boxes, scrollbars, dialog

Figure 4: Button Beans

Features of JavaBeans

ill vary in functionality, but most share certain common

Support for introspection allowing a builder tool to analyze how a bean works.

.

• s allowing beans to be manipulated programmatically, as

• n an

 commands to restore

It is n
be ma ols. All key APIs,

• Individual Java Beans w

defining features.
•
• Support for customization allowing a user to alter the appearance and

behaviour of a bean
• Support for events beans to fire events, and informing builder tools allowing

about both the events they can fire and the events they can handle.
Support for propertie
well as to support the customization mentioned above.
Support for allowing beans that have been customized ipersistence
application builder to have their state saved and restored. Typically persistence
is used with an application builder’s save and load menu
any work that has gone into constructing an application.

ot essential that Beans can only be primarily with builder tools. Beans can also
nually manipulated by programmatic interfaces of Text to

 96

Applets Programming
and Advance Java
Concepts

 utility from the JavaBeans Development Kit (BDK). Basically the
BeanBox is a test container for your JavaBeans. It is designed to allow programmers

ilder

m containing the code given below:

 /WEB-INF/classes/com/myBean/bean/test/ folder

public class SimpleBean implements java.io.Serializable

private String ename = null;
 0;

{}
ods */

 {

d setAge(int i)
 {

e class SimpleBean implements java.io.Serializable interface.

e. These variables
side a JavaBean are called properties. These properties are private and are thus not

you compile any other Java Class file. After
class file is created and is ready for use.

 simple
zable interface,

including support for events, properties, and persistence, have been designed to be
easily read and understood by human programmers as well as by builder tools.

BeanBox

BeanBox is a

to preview how a Bean created by user will be displayed and manipulated in a bu
tool. The BeanBox is not a builder tool.It allows programmers to preview how a bean
will be displayed and used by a builder tool.

Example of Java Bean Class

Create a new SimpleBean.java progra

package com.mybean.bean.test;

{
 /* Properties */

 private int eage =
 /* Empty Constructor */
 public SimpleBean()
 /* Getter and Setter Meth
 public String getEname()

 return ename;
 }
 public void setEname(String s)
 {
 ename = s;
 }
 public int getAge()
 {
 return eage;
 }

 public voi

 eage = i;
 }
}

Th

There are two variables which hold the name and age of a employe
in
directly accessible by other classes. To make them accessible, methods are defined.

Compiling JavaBean
You can compile JavaBean like
compilation, a SimpleBean.
Finally you can say, JavaBeans are Java classes which adhere to an extremely
coding convention. All you have to do is to implement java.io.Seriali

97

Advance Java

……………………………………………………………………………………

2)

3)

…

4)

.6 SUMMARY

use a public empty argument constructor and provide public methods to get and set
the values of private variables (properties).

 Check Your Progress 4

1) What are JavaBeans?

……………………………………………………………………………………

What do you understand by Introspection?
……………………………………………………………………………………

……………………………………………………………………………………

What is the difference between a JavaBean and an instance of a normal Java
class?
…………………………………………………………………………………

……………………………………………………………………………………

In a single line answer what is the main responsibility of a Bean Developer.
……………………………………………………………………………………

……………………………………………………………………………………

4

In this unit you have learn Java JDBC are used to connect databases and work with it.
JDBC allows the integration of SQL call into a general programming environment.

 RMI (Remote Methods Invocation).
very RMI program has two sets one for client side and other for server side. Remote

s is an extension of
enericServlet that include methods for handling HTTP. HTTP request for specific

pSession

ans are a new dimension in software component model. Beans provide
trospection and persistency.

.7 SOLUTIONS/ANSWERS

Vender specific drivers are needed in JDBC programming to make a code portable.
getConnection() method of DriverManager class is used to create connection object.
By PreparedStatement similar queries can be performed in efficient way. Tuples in
ResultSet are accessed by using next () method.

Distributed programming can be done using Java
E
interface is essentially implemented in RMI programs.

Servlets are used with web servers. The HttpServlet clas
G
data are handled by using doGet () and doPost () methods of HttpServlet. Htt
objects are used to solve the problems of HTTP caused due to the stateless nature of
HTTP.

Java Be
in

4

Check Your Progress 1
1) Programs are written acc

driver Manager. JDBC dr
ording to the JDBC driver API would talk to the JDBC
iver Manager would use the drivers that were plugged

2)

a) JDBC-ODBC Bridge Driver: Talks to an ODBC connection using largely

into it at that moment to access the actual database.

Four types of drivers are there for JDBC. They are:

non-Java code.

 98

Applets Programming
and Advance Java
Concepts b) y Java) : Uses foreign functions to talk to a non-Java

API; the non-Java component talks to the database any way it
e

 c) a middleware layer over a network

connection using the middleware’s own protocol (Client library is

 d) ectly to the RDBMS over a network

connection using an RDBMS-specific protocol. (pure Java library that

3) //It is

 con.setAutoCommit(false);

T INTO Employee VALUES('Archana', 'xyz',

 eUpdate("INSERT INTO Sells Employee('Archie', 'ABC', 40000)");

i. rs.next() is used to move to next row of the table.
ii. rs.getString(3) will give the value of the third attribute in the current

r cannot be included

Check You

te method on a remote object’ the remote method calls
a method of java programming language that is encapsulated in a surrogate

ii. A description of the method to be called.

) eceiver object on server side are:

ii. Locating the object to be called.

ing the value or exception of the call.
g of the marshalled return data back to the stub

)
sim on of remote objects. The naming service is a JDK utility

Native API,(Partl

likes.(Written partly in Java and partly in native code, that communicat
with the native API of a database.

Net Protocol (pure Java): Talks to

independent of the actual database).

Native Protocol (pure Java): Talks dir

translates JDBC requests directly to a database-specific protocol.

 assumed that Employee database is already existing.

 The Statement stmt = con.createStatement();

stmt.executeUpdate("INSER
30000)");
con.rollback();
stmt.execut

 con.commit();
 con.setAutoCommit(true);

4)

 row. In this program the third attribute is Address.
iii The statement “Class.forName("sun.jdbc.odbc.JdbcOdbcDriver")” is

essential for the program execution. Database drive
in JDBC runtime method. If you want to remove this statement from
program you must have to provide jdbc.divers property using command
line parameter.

r Progress 2

1) When you invoke a remo

object called Stub. The Following information is built by Stub:

i. An identifier of the remote object to be used.

 iii. The marshalled parameters.

2 The basic actions performed by r

 i. Unmarshaling of the parameters.

 iii. Calling the desired method
 iv. Capturing the marshals and return
 v. Sending a package consistin

on the client.

3 RMI Registry is required to provide RMI Naming Service which is used to
plify the locati

called rmiregistry that runs at a well-known address.

99

Advance Java heck Your Progress 3

) Java servlets are more efficient, easier to use, more powerful, more portable,

Following are the advantages of Services

Efficient. With servlets, the Java Virtual Machine stays up, and each request is

o the

onvenient. Servlets have an extensive infrastructure for automatically parsing

owerful. Java servlets let us easily do several things that are difficult or
Web

re

ortable. Servlets are written in Java and follow a well-standardized API.

) Session tracking is a concept which allows you to maintain a relationship

me

) i. The doGet() method is limited with 2k of data only to be sent, but this

. e following:

 http://www.abc.com/svt1?p1=v1&p2=v2&...&pN=vN
let name in a

 An HTTP Servlet handles client requests through its service method, which

heck Your Progress 4

) Java Beans are components that can be used to assemble a larger Java
gger

) Introspection is the process of implicitly or explicitly interrogating Bean.

mechanism which uses the Reflection API and a well established set of
Naming Conventions.

C

1

and cheaper than traditional CGI than many alternative CGI-like technologies.

handled by a lightweight Java thread, not a heavyweight operating system
process. Similarly, in traditional CGI, if there are N simultaneous requests t
same CGI program, then the code for the CGI program is loaded into memory N
times. With servlets, however, there are N threads but only a single copy of the
servlet class.

C
and decoding HTML form data, reading and setting HTTP headers, handling
cookies, tracking sessions, and many other such utilities.

P
impossible with regular CGI. For example servlets can talk directly to the
server (regular CGI programs can’t). This simplifies operations that need to
look up images and other data stored in standard places. Servlets can also sha
data among each other, making useful things like database connection pools
easy to implement.

P
Consequently, servlets written for, say I-Planet Enterprise Server can run
virtually unchanged on Apache, Microsoft IIS, or WebStar. Servlets are
supported directly or via a plugin on almost every major Web server.

2
between two successive requests made to a server on the Internet by the sa
client. Servlet’s Provide an API named HttpSession is used in session tracking
programming.

3
 limitation is not with doPost() method.
 ii A request string for doGet() looks like th

But doPost() method does not need a long text tail after a serv
request.

4)
supports standard HTTP client requests. The service method dispatches each
request to a method designed to handle that request.

C

1

application. Beans are basically classes that have properties, and can tri
events. To define a property, a bean writer provides accessor methods which
are used to get and set the value of a property.

2
Implicit Introspection: Bean runtime supplies the default introspection

 100

Applets Programming
and Advance Java
Concepts

ion

In a nutshell, Introspection is a how a builder or designer can get information

3) he difference in Beans from typical Java classes is introspection. Tools that

 behavior. A Bean’s state
can be manipulated at the time it is being assembled as a part within a larger

4)

Explicit Introspection: A bean designer can provide additional informat
through an object which implements the Bean Info interface.

about how to connect a Bean with an Application.

T
recognize predefined patterns in method signatures and class definitions can
“look inside” a Bean to determine its properties and

application. The application assembly is referred to as design time in contrast
to run time. In order for this scheme to work, method signatures within Beans
must follow a certain pattern for introspection tools to recognize how Beans
can be manipulated, both at design time, and run time.

To minimize the effort in turning a component into a Bean.

	4.0 INTRODUCTION
	
	
	
	
	
	Make the connection
	Creating JDBC Statements
	Executing SELECT Statements

	Accessing ResultSet
	(Check Your Progress 1
	
	It consists of three layers as given in Figure 1

	4.3.4 Security
	Creating Distributed Applications Using RMI
	
	
	Make Classes Network Accessible
	(Check Your Progress 2

	4.4.1 Servlet Life Cycle
	
	
	
	
	
	
	A Simple Servlet: Generating Plain Text
	Compiling and Installing the Servlet

	//HelloWWW.java
	HelloWWW Output:

	Session Handling
	
	
	
	
	
	
	Hidden Form Fields

	URL Rewriting

	(Check Your Progress 3
	4.5 JAVA BEANS
	Features of JavaBeans
	
	
	
	BeanBox
	
	
	Check Your Progress 1
	Check Your Progress 2

	Check Your Progress 3
	Check Your Progress 4

