INTRODUCTION TO SOFT COMPUTING

- Concept of computation
- Hard computing
- Soft computing
- How soft computing?
- Hard computing vs. Soft computing

y = f(x), f is a mapping function.

f is also called a formal method or an algorithm to solve a problem.

Hard computing

.

- L. A. Zade (LAZ) introduced the term hard computing.
- According to LAZ: We term a computing as Hard computing, if
 - Precise result is guaranteed.
 - ✓ Control action is unambiguous.
 - ✓ Control action is formally defined (i.e., with mathematical model or algorithm).

Examples of hard computing

- Solving numerical problems (e.g., roots of polynomials, integration, etc.).
- Searching and sorting techniques.
- Solving computational geometry problems (e.g., shortest tour in a graph, finding closet pair of points given a set of points, etc.).

Need of soft computing

Sometimes, conventional computing or analytical models does not provide a solution to some real-world problems. In that case, we require other technique like soft computing to obtain an approximate solution.

- Hard computing is used for solving mathematical problems that need a precise answer. It fails to provide solutions for some real-life problems. Thereby for reallife problems whose precise solution does not exist, soft computing helps.
- When conventional mathematical and analytical models fail, soft computing helps, e.g., you can map even the human mind using soft computing.
- Analytical models can be used for solving mathematical problems and valid for ideal cases. But the real-world problems do not have an ideal case; these exist in a non-ideal environment.
- Soft computing is not only limited to theory; it also gives insights into real-life problems.

What is soft computing

Soft computing is the reverse of hard (conventional) computing. It refers to a group of computational techniques that are based on <u>artificial intelligence (AI)</u> and natural selection. It provides cost-effective solutions to the complex real-life problems for which hard computing solution does not exist.

Zadeh coined the term of soft computing in 1992. The objective of soft computing is to provide precise approximation and quick solutions for complex real-life problems.

S.NO. Soft Computing

Hard Computing

1.	Soft Computing is liberal of inexactness, uncertainty, partial truth and approximation.	Hard computing needs an exactly stated analytic model.
2.	Soft Computing relies on formal logic and probabilistic reasoning.	Hard computing relies on binary logic and crisp system.
3.	Soft computing has the features of approximation.	Hard computing has the features of exactitude (precision).
4.	Soft computing works on ambiguous and noisy data.	Hard computing works on exact data.
5.	Soft computing can perform parallel computations.	Hard computing performs sequential computations.
7.	Soft computing produces approximate results.	Hard computing produces precise results.
8.	Soft computing can emerge its own programs.	Hard computing requires programs to be written.
9.	Soft computing uses multi valued logic. Example. Fuzzy Logic	Hard computing uses two-valued logic. Example. Binary Logic (0 or 1)

Characteristics of soft computing

- It does not require any mathematical modeling of problem solving.
- It may not yield the precise solution.
- Algorithms are adaptive (i.e., it can adjust to the change of dynamic environment).
- Use some biological inspired methodologies such as genetics, evolution, Ant's behaviors, particles swarming, human nervous system, etc.).

Soft Computing Techniques:

- 1. Neural Networks (ANN)
- 2. Fuzzy Logic
- 3. Genetic Algorithms