Classification of Routing Algorithms



Routing is process of establishing the
routes that data packets must follow to
reach the destination. In this process, a
routing table table is created which
contains information regarding routes
which data packets follow. Various
routing algorithm are used for the
purpose of deciding which route an
incoming data packet needs to be
transmitted on to reach destination

efficiently.



The Routing algorithm is divided into two

categories:



o Adaptive Routing algorithm

o Non-adaptive Routing algorithm

;Adapﬁve Routing
algorithm



Adaptive Routing algorithm



o An adaptive routing algorithm is also

known as dynamic routing algorithm.

o This algorithm makes the routing
decisions based on the topology and

network traffic.



An adaptive routing algorithm can be classified

Into three parts:



e (a) Isolated — In this method each,
node makes its routing decisions using
the information it has without seeking
information from other nodes. The
sending nodes doesn’t have
information about status of particular
link. Disadvantage is that packet may
be sent through a congested network
which may result in delay. Examples:

Hot potato routing, backward learning.

e (b) Centralized — In this method, a
centralized node has entire
information about the network and
makes all the routing decisions.
Advantage of this is only one node is
required to keep the information of
entire network and disadvantage is
that if central node goes down the

entire network is done.



e (c) Distributed — In this method, the
node receives information fro its
neighbors and then takes the decision
about routing the packets.
Disadvantage is that the packet may be
delayed if there is change in between
interval in which it receives

information and sends packet.



Non-Adaptive Routing algorithm



o Non Adaptive routing algorithm is also

known as a static routing algorithm.

o When booting up the network, the routing

information stores to the routers.



o Non Adaptive routing algorithms do not
take the routing decision based on the

network topology or network traffic.

The Non-Adaptive Routing algorithm is of two
types:

Flooding: In case of flooding, every incoming
packet is sent to all the outgoing links except the
one from it has been reached. The disadvantage
of flooding is that node may contain several

copies of a particular packet.

Random walks: In case of random walks, a
packet sent by the node to one of its neighbors
randomly. An advantage of using random walks
is that it uses the alternative routes very

efficiently.



e —

The examples of static algorithms are :
(i) Shortest path routing

(i) Flooding, and

(i) Flow based routing.




Shortest Path Routing

In shortest path routing, the topology communications network is represented using a directed
weighted graph. The nodes in the graph represent switching elements and the directed arcs in
the graph represent communication links between switching elements. Each arc has a weight that
represents the cost of sending a packet between two nodes in a particular direction. This cost
is generally a positive value that can inculcates such factors as delay, throughput, error rate,
monetary cost etc. A path between two nodes may go through several intermediary nodes and arc.
The objective in shortest path routing is to find a path between two nodes that has the smallest
total cost, where the total cost of a path is the sum of the arc costs in that path.



Dijkstra's Shortest Path
Algorithm

One algorithm for finding the shortest path
from a starting node to a target node in a
weighted graph is Dijkstra’s algorithm. The algo-
rithm creates a tree of shortest paths from the
starting vertex, the source, to all other points in

the graph.



Dijkstra's Algorithm allows you to
calculate the shortest path between one
node (you pick which one) and every
other node in the graph. You'll find a
description of the algorithm at the end
of this page, but, let's study the
algorithm with an explained example!
Let's calculate the shortest path

petween node C and the other nodes in
our graph:




During the algorithm execution, we'll
mark every node with its minimum
distance to node C (our selected node).
For node C, this distance is 0. For the
rest of nodes, as we still don't know that

minimum distance, it starts being
INfinity (oo):

0
°

We'll also have a current node. Initially,
we set it to C (our selected node). In the
image, we mark the current node with a

red dot.



Now, we check the neighbours of our
current node (A, B and D) in no specific
order. Let's begin with B. We add the
minimum distance of the current node
(in this case, 0) with the weight of the
edge that connects our current node
with B (in this case, 7), and we obtain O +
/ =7. We compare that value with the
minimum distance of B (infinity); the
lowest value is the one that remains as
the minimum distance of B (in this case,
7 is less than infinity):




So far, so good. Now, let's check
neighbour A. We add 0 (the minimum
distance of C, our current node) with 1
(the weight of the edge connecting our
current node with A) to obtain 1. We
compare that 1 with the minimum
distance of A (infinity), and leave the
smallest value:

OK. Repeat the same procedure for D:



Great. We have checked all the
neighbours of C. Because of that, we
mark it as visited. Let's represent visited
nodes with a green check mark:



We now need to pick a new current node.
That node must be the unvisited node
with the smallest minimum distance (so,
the node with the smallest number and
no check mark). That's A. Let's mark it
with the red dot:



And now we repeat the algorithm. We
check the neighbours of our current
node, ignoring the visited nodes. This
means we only check B.

For B, we add 1 (the minimum distance
of A, our current node) with 3 (the
weight of the edge connecting A and B)
to obtain 4. We compare that 4 with the
minimum distance of B (7) and leave the
smallest value: 4.



Afterwards, we mark A as visited and
pick a new current node: D, which is the
non-visited node with the smallest
current distance.




We repeat the algorithm again. This
time, we check B and E.

For B, we obtain 2 + 5 =7. We compare
that value with B's minimum distance
(4) and leave the smallest value (4). For
E, we obtain 2+ 7 =9, compare it with
the minimum distance of E (infinity) and
leave the smallest one (9).

We mark D as visited and set our
current node to B.

4 -~
® oo



Almost there. We only need to check E.
4+ 1 =5, whichis less than E's
minimum distance (9), so we leave the
5. Then, we mark B as visited and set E
as the current node.

4 47~

E doesn't have any non-visited

neighbours, so we don't need to check
anything. We mark it as visited.



As there are not univisited nodes, we're
done! The minimum distance of each
node now actually represents the
minimum distance from that node to

node C (the node we picked as our
initial node)!



