
Page 1 of 4

What is Dynamic Memory Allocation in C?
C Server Side Programming Programming

Here we will see what is dynamic memory allocation in C. The C programming language
provides several functions for memory allocation and management. These functions can
be found in the <stdlib.h> header file. The following functions for memory allocations.

Function Description

void *calloc(int num, int
size);

This function allocates an array of num elements each
of which size in bytes will be size.

void free(void *address);
This function releases a block of memory block
specified by address.

void *malloc(int num);
This function allocates an array of num bytes and
leave them uninitialized.

void *realloc(void *address,
int newsize);

This function re-allocates memory extending it upto
newsize.

Allocating memory dynamically

While programming, if you are aware of the size of an array, then it is easy and you can
define it as an array. For example, to store a name of any person, it can go up to a
maximum of 100 characters, so you can define something as follows −

char name[100];

But now let us consider a situation where you have no idea about the length of the text
you need to store, for example, you want to store a detailed description about a topic.
Here we need to define a pointer to character without defining how much memory is
required and later, based on requirement, we can allocate memory as shown in the
below example −

Example Code

https://www.tutorialspoint.com/what-is-dynamic-memory-allocation-in-c 1/4

https://www.tutorialspoint.com/articles/category/C
https://www.tutorialspoint.com/articles/category/Server-Side-Programming
https://www.tutorialspoint.com/articles/category/Programming

Page 2 of 4

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {
 char name[100];
 char *description;
 strcpy(name, "Adam");
 /* allocate memory dynamically */
 description = malloc(200 * sizeof(char));
 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory
");
 } else {
 strcpy(description, "Adam a DPS student in class 10th");
 }
 printf("Name = %s
", name);
 printf("Description: %s
", description);
}

Explore our latest online courses and learn new skills at your own pace. Enroll and
become a certified expert to boost your career.

Output

Name = Zara Ali
Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc
with calloc as follows −

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory,
unlike arrays where once the size defined, you cannot change it.

Resizing Memory Locations

When your program comes out, operating system automatically release all the memory
allocated by your program but as a good practice when you are not in need of memory
anymore then you should release that memory by calling the function free().

https://www.tutorialspoint.com/what-is-dynamic-memory-allocation-in-c 2/4

https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal

Page 3 of 4

Alternatively, you can increase or decrease the size of an allocated memory block by
calling the function realloc(). Let us check the above program once again and make use
of realloc() and free() functions −

Example Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main() {
 char name[100];
 char *description;
 strcpy(name, "Adam");
 /* allocate memory dynamically */
 description = malloc(30 * sizeof(char));
 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory
");
 } else {
 strcpy(description, "Adam a DPS student.");
 }
 /* suppose you want to store bigger description */
 description = realloc(description, 100 * sizeof(char));
 if(description == NULL) {
 fprintf(stderr, "Error - unable to allocate required memory
");
 } else {
 strcat(description, "He is in class 10th");
 }
 printf("Name = %s
", name);
 printf("Description: %s
", description);
 /* release memory using free() function */
 free(description);
}

Output

Name = Adam
Description: Adam a DPS student.He is in class 10th

https://www.tutorialspoint.com/what-is-dynamic-memory-allocation-in-c 3/4

Page 4 of 4

You can try the above example without re-allocating extra memory, and strcat() function
will give an error due to lack of available memory in description.

https://www.tutorialspoint.com/what-is-dynamic-memory-allocation-in-c 4/4

