
 Computer Science and Engineering306

 3.0 Introduction

Experienced programmer used to divide large (lengthy) programs in to
parts, and then manage those parts to be solved one by one. This method of
programming approach is to organize the typical work in a systematic manner.
This aspect is practically achieved n C language thorough the concept known as
‘Modular Programming”.

The entire program is divided into a series of modules and each module is
intended to perform a particular task. The detailed work to be solved by the
module is described in the module (sub program) only and the main program
only contains a series of modulus that are to be executed. Division of a main
program in to set of modules and assigning various tasks to each module depends
on the programmer’s efficiency.

Whereas there is a need for us repeatedly execute one block of statements
in one place of the program, loop statements can be used. But, a block of
statements need to be repeatedly executed in many parts of the program, then
repeated coding as well as wastage of the vital computer resource memory will
wasted. . If we adopt modular programming technique, these disadvantages
can be eliminated. The modules incorporated in C are called as the
FUNCTIONS, and each function in the program is meant for doing specific
task. C functions are easy to use and very efficient also.

3.1 Functions

Definition

 A function can be defined as a subprogram which is meant for doing a
specific task.

In a C program, a function definition will have name, parentheses pair contain
zero or more parameters and a body. The parameters used in the parenthesis
need to be declared with type and if not declared, they will be considered as of
integer type.

The general form of the function is :

 function type name <arg1,arg2,arg3, ————,argn>)

 data type arg1, arg2,;

 data type argn;

{

body of function;

307Paper - II Programming in C

——————————

——————————

——————————

return (<something>);

 }

From the above form the main components of function are

• Return type

• Function name

• Function body

• Return statement

Return Type

Refers to the type of value it would return to the calling portion of the
program. It can have any of the basic data types such as int, float, char, etc.
When a function is not supposed to return any value, it may be declared as type
void

Example

void function name(- - - - - - - - - -);

int function name(- - - - - - - - - -);

char function name (— - - - - - -);

Function Name

The function name can be any name conforming to the syntax rules of the
variable.

A function name is relevant to the function operation.

Example

output();

read data();

 Computer Science and Engineering308

Formal arguments

The arguments are called formal arguments (or) formal parameters,
because they represent the names of data items that are transferred into the
function from the calling portion of the program.

Any variable declared in the body of a function is said to be local to that
function, other variable which were not declared either arguments or in the function
body, are considered “globol” to the function and must be defined externally.

Example

int biggest (int a, int b)

{

————————————

————————————

————————————

return();

}

a, b are the formal arguments.

Function Body

Function body is a compound statement defines the action to be taken by
the function. It should include one or more “return” statement in order to return
a value to the calling portion of the program.

Example

int biggest(int a, int b)

{

if (a > b)

return(a); body of function.

else

return(b);

}

309Paper - II Programming in C

Every C program consists of one or more functions. One of these functions
must be called as main. Execution of the program will always begin by carrying
out the instructions in main. Additional functions will be subordinate to main. If a
program contains multiple functions, their definitions may appear in any order,
though they must be independent of one another. That is, one function definition
can’t be embedded within another.

Generally a function will process information that is passed to it from the
calling portion of the program and return a single value. Information is passed to
the function via arguments (parameters) and returned via the “return” statement.

Some functions accept information but do not return anything (ex: printf())
whereas other functions (ex: scanf()) return multiple values.

3.1.1 The Return Statement

Every function subprogram in C will have return statement. This statement
is used in function subprograms to return a value to the calling program/function.
This statement can appear anywhere within a function body and we may have
more than one return statement inside a function.

The general format of return statement is

 return;

 (or)

 return (expression);

If no value is returned from function to the calling program, then there is no
need of return statement to be present inside the function.

Programs using function Call Techniques

 Example 1: Write a program to find factorial to the given positive integer
,using function technique.

include <stdio.h>

main()

{

 int n;

 printf (“ Enter any positive number\n”);

 scanf(“%d”, &n);

 Computer Science and Engineering310

 printf(“ The factorial of %d s %d \n”,fact (n));

}

fact(i)

int I;

{

 int j; f = 1 ;

 for (j = I; j>0; j - -)

 f = f * I;

 return (f) ;

}

In the above program function with name ‘fact’ is called by the main program.
The function fact is called with n as parameter. The value is returned through
variable f to the main program.

Example 2: Write a program to find the value of f(x) as f(x) = x 2 + 4, for
the given of x. Make use of function technique.

 # include <stdio.h>

 main()

{

 f ();

}

f ()

 { int x,y ;

 printf(“ Enter value of x \n”);

 scanf(“ %d”, & x);

 y = (x * x + 4);

 printf (“ The value of f (x) id %d \n”, y) ;

}

311Paper - II Programming in C

 3.2 Differences between Function and Procedures

3.3 Advantages of Function

The main advantages of using a function are:

• Easy to write a correct small function

• Easy to read and debug a function.

• Easier to maintain or modify such a function

• Small functions tend to be self documenting and highly readable

• It can be called any number of times in any place with different
parameters.

Storage class

A variable’s storage class explains where the variable will be stored, its
initial value and life of the variable.

Iteration

The block of statements is executed repeatedly using loops is called Iteration

Procedure

1. Procedure is a sub program
which is included with in
main program.

2. Procedure donot return a
value.

3. Procedure cannot be
called again and again.

4. Global variables cannot be
used in procedure.

5. Procedures can be writ-
ten only in procedural pro-
gramming such as Dbase,
Foxpro.

Function

1. Functions is sub program
which is intended for specific
task. Eg. sqrt()

2. Functions may or may not
return a value.

3. Function once defined can
be called any where n number
of times.

4. In functions both local and
global variables can be used.

5. Functions can be written in
modular programming such as
C, C++

 Computer Science and Engineering312

Categories of Functions

A function, depending on, whether arguments are present or not and a
value is returned or not.

A function may be belonging to one of the following types.

1. Function with no arguments and no return values.

2. Function with arguments and no return values.

3. Function with arguments and return values

3.4 Advanced Featured of Functions

 a. Function Prototypes

 b. Calling functions by value or by reference

 c. Recursion.

a. Function Prototypes

The user defined functions may be classified as three ways based on the
formal arguments passed and the usage of the return statement.

a. Functions with no arguments and no return value

b. Functions with arguments no return value

c. Functions with arguments and return value.

a. Functions with no arguments and no return value

A function is invoked without passing any formal arguments from the calling
portion of a program and also the function does not return back any value to the
called function. There is no communication between the calling portion of a
program and a called function block.

Example:

#include <stdio.h>

main()

{

void message(); Function declaration

message(); Function calling

}

313Paper - II Programming in C

void message()

{

printf (“GOVT JUNIOR COLLEGE \n”);

printf (“\t HYDERABAD”);

}

b. Function with arguments and no return value

This type of functions passes some formal arguments to a function but the
function does not return back any value to the caller. It is any one way data
communication between a calling portion of the program and the function block.

Example

#include <stdio.h>

main()

{

void square(int);

printf (“Enter a value for n \n”);

scanf (“%d”,&n);

square(n);

}

void square (int n)

{

int value;

value = n * n;

printf (“square of %d is %d “,n,value);

}

c. Function with arguments and return value

The third type of function passes some formal arguments to a function from
a calling portion of the program and the computer value is transferred back to
the caller. Data are communicated between the calling portion and the function
block.

 Computer Science and Engineering314

Example

#include <stdio.h>

main()

{

int square (int);

int value;

printf (“enter a value for n \n”);

scanf(“%d”, &n);

value = square(n);

printf (“square of %d is %d “,n, value);

}

int square(int n)

{

int p;

p = n * n;

return(p);

}

The keyword VOID can be used as a type specifier when defining a function
that does not return anything or when the function definition does not include
any arguments.

The presence of this keyword is not mandatory but it is good programming
practice to make use of this feature.

Actual and Formal Parameters (or) Arguments

Function parameters are the means of communication between the calling
and the called functions. The parameters may classify under two groups.

1. Formal Parameters

2. Actual Parameters

315Paper - II Programming in C

1. Formal Parameters

The formal parameters are the parameters given in function declaration and
function definition. When the function is invoked, the formal parameters are
replaced by the actual parameters.

2. Actual Parameters

The parameters appearing in the function call are referred to as actual
parameters. The actual arguments may be expressed as constants, single variables
or more complex expression. Each actual parameter must be of the same data
type as its corresponding formal parameters.

Example

#include <stdio.h>

int sum (int a , int b)

{

int c;

c = a + b;

return(c);

}

main()

{

intx,y,z;

printf (“enter value for x,y \n”);

scanf (“%d %d”,&x,&y);

z = x + y;

printf (“ sum is = %d”,z);

}

The variables a and b defined in function definition are known as formal
parameters. The variables x and y are actual parameters.

 Computer Science and Engineering316

Local and Global Variable:

The variables may be classified as local or global variables.

Local Variable

The variables defined can be accessed only within the block in which they
are declared. These variables are called “Local” variables

Example

funct (int ,int j)

{

intk,m;

————;

————;

}

The integer variables k and m are defined within a function block of the
“funct()”. All the variables to be used within a function block must be either
defined at the beginning of the block or before using in the statement. Local
variables one referred only the particular part of a block of a function.

Global Variable

Global variables defined outside the main function block. Global variables
are not contained to a single function. Global variables that are recognized in
two or more functions. Their scope extends from the point of definition through
the remainder of the program.

b. Calling functions by value or by reference

The arguments are sent to the functions and their values are copied in the
corresponding function. This is a sort of information inter change between the
calling function and called function. This is known as Parameter passing. It is a
mechanism through which arguments are passed to the called function for the
required processing. There are two methods of parameter passing.

1. Call by Value

2. Call by reference.

1. Call by value: When the values of arguments are passed from calling
function to a called function, these values are copied in to the called function. If

