
 Computer Science and Engineering292

printf (“white”);

break;

default :

printf (“no colour”);

}

Example 2:

switch(day)

{

case 1:

printf (“Monday”);

break;

———

———

}

2.8 Structure for Looping Statements

Loop statements are used to execute the statements repeatedly as long as
an expression is true. When the expression becomes false then the control
transferred out of the loop. There are three kinds of loops in C.

a) while b) do-while c) for

a. while statement

while loop will be executed as long as the exp is true.

Syntax: while (exp)

{

statements;

}

The statements will be executed repeatedly as long as the exp is true. If the
exp is false then the control is transferred out of the while loop.

Example:

293Paper - II Programming in C

int digit = 1;

While (digit <=5) FALSE

{

printf (“%d”, digit); TRUE

Cond Exp

Statements; ++digit;

}

The while loop is top tested i.e., it evaluates the condition before executing
statements in the body. Then it is called entry control loop.

b. do-while statement

The do-while loop evaluates the condition after the execution of the statements
in the body.

Syntax: do

Statement;

While<exp>;

Here also the statements will be executed as long as the exp value is true. If
the expression is false the control come out of the loop.

Example:

-int d=1;

do

{

printf (“%d”, d); FALSE

++d;

} while (d<=5); TRUE

Cond Exp

statements

exit

 Computer Science and Engineering294

The statement with in the do-while loop will be executed at least once. So
the do-while loop is called a bottom tested loop.

c. for statement

The for loop is used to executing the structure number of times. The for
loop includes three expressions. First expression specifies an initial value for an
index (initial value), second expression that determines whether or not the loop
is continued (conditional statement) and a third expression used to modify the
index (increment or decrement) of each pass.

Note: Generally for loop used when the number of passes is known in
advance.

Syntax: for (exp1;exp2;exp3)

{

Statement –1;

Statement – 2;

—————; FALSE

—————;

Statement - n; TRUE

}

exp2

Statements;

exp3

Exit loop

exp1

start

Where expression-1 is used to initialize the control variable. This expression
is executed this expression is executed is only once at the time of beginning of
loop.

Where expression-2 is a logical expression. If expression-2 is true, the
statements will be executed, other wise the loop will be terminated. This expression
is evaluated before every execution of the statement.

295Paper - II Programming in C

Where expression-3 is an increment or decrement expression after
executing the statements, the control is transferred back to the expression-3
and updated. There are different formats available in for loop. Some of the
expression of loop can be omit.

Formate - I

for(; exp2; exp3)

Statements;

In this format the initialization expression (i.e., exp1) is omitted. The initial
value of the variable can be assigned outside of the for loop.

Example 1

int i = 1;

for(; i<=10; i++)

printf (“%d \n”, i);

Formate - II

for(; exp2 ;)

Statements;

In this format the initialization and increment or decrement expression (i.e
expression-1 and expression-3) are omitted. The exp-3 can be given at the
statement part.

Example 2

int i = 1;

for(; i<=10;)

{

printf (“%d \n”,i);

i++;

}

Formate - III

for(; ;)

Statements;

 Computer Science and Engineering296

In this format the three expressions are omitted. The loop itself assumes
the expression-2is true. So Statements will be executed infinitely.

Example 3

int i = 1;

for (; i<=10;)

{

printf (“%d \n”,i);

i++;

}

2.9 Nested Looping Statements

Many applications require nesting of the loop statements, allowing on loop
statement to be embedded with in another loop statement.

Definition

Nesting can be defined as the method of embedding one control structure
with in another control structure.

While making control structure s to be reside one with in another ,the
inner and outer control structures may be of the same type or may not be of
same type. But ,it is essential for us to ensure that one control structure is
completely embedded within another.

 /*program to implement nesting*/

 #include <stdio.h>

 main()

{

int a,b,c,

for (a=1,a< 2, a++)

{

printf (“%d”,a)

for (b=1,b<=2,b++)

{

297Paper - II Programming in C

print f(%d”,b)

for (c=1,c<=2,c++)

{

print f(“ My Name is Sunny \n”);

}

}

}

}

2.10 Multi Branching Statement (switch), Break, and
Continue

For effective handling of the loop structures, C allows the following types
of control break statements.

a. Break Statement b. Continue Statement

a. Break Statement

The break statement is used to terminate the control form the loops or to
exit from a switch. It can be used within a for, while, do-while, for.

The general format is :

break;

If break statement is included in a while, do-while or for then control will
immediately be transferred out of the loop when the break statement is
encountered.

Example

for (; ;) normal loop

{

break

Condition

within loop

scanf (“%d”,&n);

if (n < -1)

 Computer Science and Engineering298

break;

sum = sum + n;

}

b. The Continue Statement

The continue statement is used to bypass the remainder of the current pass
through a loop. The loop does not terminate when a continue statement is
encountered. Rather, the remaining loop statements are skipped and the proceeds
directly to the next pass through the loop. The “continue” that can be included
with in a while a do-while and a for loop statement.

General form :

continue;

The continue statement is used for the inverse operation of the break
statement .

Condition

with in loop

Remaining part of loop

continue

Example

while (x<=100)

{

if (x <= 0)

{

printf (“zero or negative value found \n”);

continue;

}

}

The above program segment will process only the positive whenever a
zero or negative value is encountered, the message will be displayed and it
continue the same loop as long as the given condition is satisfied.

299Paper - II Programming in C

2.11 Differences between Break and Continue

2.12 Unconditional Branching (Go To Statement)

goto statement

The go to statement is used to alter the program execution sequence by
transferring the control to some other part of the program.

Syntax

Where label is an identifier used to label the target statement to which the
control would be transferred the target statement will appear as:

Syntax

goto<label>;

label :

statements;

Break
1. Break is a key word used to
terminate the loop or exit from the
block. The control jumps to next
statement after the loop or block
2. Break statements can be used with
for, while, do-while, and switch
statement. When break is used in
nested loops, then only the innermost
loop is terminated.

3. Syntax:{ statement1; statement2;
statement3; break;}

4. Example :Switch (choice){ Case
‘y’: printf(“yes”); break; Case ‘n’:
printf(“NO”); break;}
5. When the case matches with the
choice entered, the corresponding case
block gets executed. When ‘break’
statement is executed, the control
jumps out of the switch statement.

Continue
1. Continue is a keyword used for
containing the next iteration of the
loop

2. This statement when occurs in a
loop does not terminate it rather skips
the statements after this continue
statement and the control goes for
next iteration. ‘Continue’ can be used
with for, while and do- while loop.
3. Syntax: { statement1;
continue; statement2;
statement3; break; }
4. Example:- I = 1, j=0;While(i<=
7){ I = I + 1; If((I = = 6) Continue;
j = j + 1;}
5. In the above loop, when value of ‘
i becomes 6’ continue statement is
executed. So, j= j+1 is skipped and
control is transferred to beginning of
while loop.

 Computer Science and Engineering300

Example 1

#include <stdio.h>

main();

{

inta,b;

printf (“Enter the two numbers”);

scanf (“%d %d”,&a,&b);

if (a>b)

gotobig;

else

gotosmall;

big :printf (“big value is %d”,a);

gotostop;

small :printf (“small value is %d”,b);

gotostop;

stop;

}

Simple Programs Covering Above Topics

Practice Programs

1. Write a C program to find out smallest value among A, B,C.

Ans:

include <stdio.h>

int a,b,c;

clrscr();

scanf(%d %d %d, &a, &b, &c);

if (a<b)

{

301Paper - II Programming in C

if(a<c)

printf(“a is small/n”)

else

}

02. Write a ‘C’ programe for 5th multiplication table with the help of
goto statement.

Ans.

#include<stdio.h>

main()

{

int t, n = 1, P;

Printf(“Enter table number:”);

Scanf(“%d,&t);

A:

if (n<=10)

{

P=t * n;

Printf(“%d * %d = %d \n”, t,n,p);

n++;

goto A;

}

else

printf(“Out of range”);

}

03. Write a ‘C’ program to find greatest among three numbers.

Ans. #include<stdio.h>

void main()

 Computer Science and Engineering302

{

int a,b,c;

printf(“enter the values of a,b,c,”);

scanf(“%d%d%d”, &a,&b,&c);

if((a>b)&&(c>b))

{

if(a>c)

printf(“a is the max no”);

else

printf(“C is the max no”);

}

else if ((b>c)&&(a>c))

{

if(b>a)

printf(“b is the max no”);

else

printf(“a is the max no”);

}

else if ((b>a)&&(c>a))

{

if(b>c)

printf(“b is the max no”);

else

printf(“C is the max no”);

}

}

