

275Paper - II Programming in C

 2.4 Operators

An Operator is a symbol that operates on a certain data type. The data
items that operators act upon are called operands. Some operators require
two operands, some operators act upon only one operand. In C, operators can
be classified into various categories based on their utility and action.

1. Arithmetic Operators 5. Increment & Decrement Operator

2. Relational Operators 6. Conditional Operator

3. Logical Operator 7. Bitwise Operator

4. Assignment Operator 8. Comma Operator

1. Arithmetic Operators

The Arithmetic operators performs arithmetic operations. The Arithmetic
operators can operate on any built in data type. A list of arithmetic operators are

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

2. Relational Operators

Relational Operators are used to compare arithmetic, logical and character
expressions. The Relational Operators compare their left hand side expression
with their right hand side expression. Then evaluates to an integer. If the Expression
is false it evaluate to “zero”(0) if the expression is true it evaluate to “one”

Operator Meaning

< Less than

> Greater than

<= Less than or Equal to

>= Greater than or Equal to

= = Equal to

 Computer Science and Engineering276

!= Not Equal to

The Relational Operators are represented in the following manner:

Expression-1 Relational Operator Expression-2

The Expression-1 will be compared with Expression -2 and depending on
the relation the result will be either “TRUE” OR “FALSE”.

Examples :

Expression Evaluate to

(5 <= 10) ———————— 1

(-35 > 10) ———————— 0

(X < 10) ———————— 1 (if value of x is less than 10)

0 Other wise

(a + b) = = (c + d) 1 (if sum of a and b is equal to sum of c, d)

0 Other wise

3. Logical Operators

A logical operator is used to evaluate logical and relational expressions.
The logical operators act upon operands that are themselves logical expressions.
There are three logical operators.

Operators Expression

&& Logical AND

|| Logical OR

! Logical NOT

Logical And (&&): A compound Expression is true when two expression
when two expressions are true. The && is used in the following manner.

Exp1 && Exp2.

The result of a logical AND operation will be true only if both operands are
true.

The results of logical operators are:

Exp1 Op. Exp2 Result

True && True True

277Paper - II Programming in C

True && False False

False && False False

False && True False

Example: a = 5; b = 10; c = 15;

 Exp1 Exp2 Result

1. (a< b) && (b < c) => True

2. (a> b) && (b < c) => False

3. (a< b) && (b > c) => False

4. (a> b) && (b > c) => False

Logical OR: A compound expression is false when all expression are
false otherwise the compound expression is true. The operator “||” is used as It
evaluates to true if either exp-1 or exp-2 is true. The truth table of “OR” is Exp1
|| Exp2

Exp1 Operator Exp2 Result:

True || True True

True || False True

False || True True

False || False False

Example: a = 5; b = 10; c = 15;

Exp1 Exp2 Result

1. (a< b) || (b < c) => True

2. (a> b) || (b < c) => True

3. (a< b) || (b > c) => True

4. (a> b) || (b > c) => False

Logical NOT: The NOT (!) operator takes single expression and
evaluates to true(1) if the expression is false (0) or it evaluates to false (0) if
expression is true (1). The general form of the expression.

! (Relational Expression)

The truth table of NOT :

 Computer Science and Engineering278

Operator. Exp1 Result

! True False

! False True

Example: a = 5; b = 10; c = 15

1. !(a< b) False

2. !(a> b) True

4. Assignment Operator

An assignment operator is used to assign a value to a variable. The most
commonly used assignment operator is =. The general format for assignment
operator is :

<Identifer> = < expression >

Where identifier represent a variable and expression represents a constant,
a variable or a Complex expression.

If the two operands in an assignment expression are of different data types,
then the value of the expression on the right will automatically be converted to
the type of the identifier on the left.

Example: Suppose that I is an Integer type Variable then

1. I = 3.3 3 (Value of I)

2. I = 3.9 3 (Value of I)

3. I = 5.74 5 (Value of I)

Multiple assignment

< identifier-1 > = < identifier-2 > = - - - = < identifier-n > = <exp>;

Example: a,b,c are integers; j is float variable

1. a = b = c = 3;

2. a = j = 5.6; then a = 5 and j value will be 5.6

C contains the following five additional assignment operators

1. += 2.-= 3. += 4. *= 5. /=

The assignment expression is: - Exp1 < Operator> Exp-2

Ex: I = 10 (assume that)

279Paper - II Programming in C

Expression Equivalent to Final Value of ‘I’

1. I + = 5 I = I + 5 15

2. I - = 5 I = I - 5 10

3. I * = 5 I = I * 5 50

4. I / = 5 I = I / 5 10

5. Increment & Decrement Operator

The increment/decrement operator act upon a Single operand and produce
a new value is also called as “unary operator”. The increment operator ++
adds 1 to the operand and the Decrement operator – subtracts 1 from the
operand.

Syntax: < operator >< variable name >;

The ++ or – operator can be used in the two ways.

Example : ++ a; Pre-increment (or) a++ Post increment —a; Pre-
Decrement (or) a— Post decrement

1. ++ a Immediately increments the value of a by 1.

2. a ++ The value of the a will be increment by 1 after it is utilized.

Example 1: Suppose a = 5 ;

Statements Output

printf (“a value is %d”, a); a value is 5

printf (“a value is %d”, ++ a); a value is 6

printf (“a value is %d “, a) ; a value is 6

Example 2: Suppose : a = 5 ;

Statements Output

printf (“a value is %d “, a); a value is 5

printf (“a value is %d “, a++); a value is 5

printf (“a value is %d “,a); a value is 6

a and a- will be act on operand by decrement value like increment operator.

6. Conditional operator (or) Ternary operator (? :)

 Computer Science and Engineering280

It is called ternary because it uses three expression. The ternary operator
acts like If- Else construction.

Syn :(<Exp –1 > ? <Exp-2> : <Exp-3>);

Expression-1 is evaluated first. If Exp-1 is true then Exp-2 is evaluated
other wise it evaluate Exp-3 will be evaluated.

Flow Chart :

Exp-1

Exp-2 Exp-3

Exit

Example:

1. a = 5 ; b = 3;

(a> b ? printf (“a is larger”) : printf (“b is larger”));

Output is :a is larger

2. a = 3; b = 3;

(a> b ? printf (“a is larger”) : printf (“b is larger”));

Output is :b is larger

7. Bit wise Operator

A bitwise operator operates on each bit of data. These bitwiseoperator
can be divided into three categories.

i. The logical bitwise operators.

ii. The shift operators

iii. The one’s complement operator.

i) The logical Bitwise Operator :There are three logical bitwise operators.

Meaning Operator:

a) Bitwise AND &

b) Bitwise OR |

c) Bitwise exclusive XOR ̂

281Paper - II Programming in C

Suppose b1 and b2 represent the corresponding bits with in the first and
second operands, respectively.

B1 B2 B1 & B2 B1 | B2 B1 ^ B2

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

The operations are carried out independently on each pair of corresponding
bits within the operand thus the least significant bits (ie the right most bits) within
the two operands. Will be compared until all the bits have been compared. The
results of these comparisons are

A Bitwise AND expression will return a 1 if both bits have a value of 1.
Other wise, it will return a value of 0.

A Bitwise OR expression will return a 1 if one or more of the bits have a
value of 1. Otherwise, it will return a value of 0.

A Bitwise EXCLUSIVE OR expression will return a 1 if one of the bits
has a value of 1 and the other has a value of 0. Otherwise, if will return a value
of 0.

Example::Variable Value Binary Pattern

X 5 0101

Y 2 0010

X & Y 0 0000

X | Y 7 0111

X ^ Y 7 0111

ii) The Bitwise shift Operations: The two bitwise shift operators are
Shift left (<<) and Shift right (>>). Each operator requires two operands.
The first operand that represents the bit pattern to be shifted. The second is an
unsigned integer that indicates the number of displacements.

Example: c = a << 3;

The value in the integer a is shifted to the left by three bit position. The
result is assigned to the c.

 Computer Science and Engineering282

A = 13; c= A<<3;

Left shit << c= 13 * 2 3 = 104;

Binary no 0000 0000 0000 1101

After left bit shift by 3 places ie,. a<<3

0000 0000 0110 1000

The right –bit – shift operator (>>) is also a binary operator.

Example: c = a >> 2 ;

The value of a is shifted to the right by 2 position

insert 0’s Right – shift >> drop off 0’s

0000 0000 0000 1101

After right shift by 2 places is a>>2

0000 0000 0000 0011 c=13>>2

c= 13/4=3

iii) Bit wise complement: The complement op.~ switches all the bits in a
binary pattern, that is all the 0’s becomes 1’s and all the 1’s becomes 0’s.

variable value Binary patter

x 23 0001 0111

~x 132 1110 1000

8. Comma Operator

A set of expressions separated by using commas is a valid construction in c
language.

Example :int i, j;

i= (j = 3, j + 2) ;

The first expression is j = 3 and second is j + 2. These expressions are
evaluated from left to right. From the above example I = 5.

Size of operator: The operator size operator gives the size of the data
type or variable in terms of bytes occupied in the memory. This operator allows
a determination of the no of bytes allocated to various Data items

Example :int i; float x; double d; char c; OUTPUT

283Paper - II Programming in C

Printf (“integer : %d\n”, sizeof(i)); Integer : 2

Printf (“float : %d\n”, sizeof(i)); Float : 4

Printf (“double : %d\n”, sizeof(i)); double : 8

Printf (“char : %d\n”,sizeof(i)); character : 1

2.5 Expressions

An expression can be defined as collection of data object and operators
that can be evaluated to lead a single new data object. A data object is a constant,
variable or another data object.

Example : a + b

 x + y + 6.0

 3.14 * r * r

 (a + b) * (a – b)

 The above expressions are called as arithmetic expressions because
the data objects (constants and variables) are connected using arithmetic
operators.

Evaluation Procedure: The evaluation of arithmetic expressions is as per
the hierarchy rules governed by the C compiler. The precedence or hierarchy
rules for arithmetic expressions are

1. The expression is scanned from left to right.

2. While scanning the expression, the evaluation preference for the operators
are

*, /, % - evaluated first

 +, - - evaluated next

3. To overcome the above precedence rules, user has to make use of
parenthesis. If parenthesis is used, the expression/ expressions with in parenthesis
are evaluated first as per the above hierarchy.

Statements

Data Input & Output

An input/output function can be accessed from anywhere within a program
simply by writing the function name followed by a list of arguments enclosed in
parentheses. The arguments represent data items that are sent to the function.

 Computer Science and Engineering284

Some input/output Functions do not require arguments though the empty
parentheses must still appear. They are:

 Input Statements Output Statements

Formatted scanf() printf()

Unformatted getchar()gets() putchar()puts()

getchar()

Single characters can be entered into the computer using the C library
Function getchar(). It returns a single character from a standard input device.
The function does not require any arguments.

Syntax: <Character variable> = getchar();

Example: char c;

c = getchar();

putchar()

Single characters can be displayed using function putchar(). It returns a
single character to a standard output device. It must be expressed as an argument
to the function.

Syntax: putchar(<character variable>);

Example: char c;

————

putchar(c);

gets()

The function gets() receives the string from the standard input device.

Syntax: gets(<string type variable or array of char>);

Where s is a string.

The function gets accepts the string as a parameter from the keyboard, till
a newline character is encountered. At end the function appends a “null” terminator
and returns.

puts()

The function puts() outputs the string to the standard output device.

285Paper - II Programming in C

Syntax: puts(s);

Where s is a string that was real with gets();

Example:

main()

{

char line[80];

gets(line);

puts(line);

}

scanf()

Scanf() function can be used input the data into the memory from the standard
input device. This function can be used to enter any combination of numerical
Values, single characters and strings. The function returns number of data items.

Syntax:-scanf (“control strings”, &arg1,&arg2,——&argn);

Where control string referes to a string containing certain required formatting
information and arg1, arg2——argn are arguments that represent the individual
input data items.

Example:

#include<stdio.h>

main()

{

char item[20];

intpartno;

float cost;

scanf(“%s %d %f”,&item,&partno,&cost);

}

Where s, d, f with % are conversion characters. The conversion characters
indicate the type of the corresponding data. Commonly used conversion
characters from data input.

 Computer Science and Engineering286

Conversion Characters

Characters Meaning

%c data item is a single character.

%d data item is a decimal integer.

%f data item is a floating point value.

%e data item is a floating point value.

%g data item is a floating point value.

%h data item is a short integer.

%s data item is a string.

%x data item is a hexadecimal integer.

%o data item is a octal interger.

printf()

The printf() function is used to print the data from the computer’s memory
onto a standard output device. This function can be used to output any
combination of numerical values, single character and strings.

Syntax: printf(“control string”, arg-1, arg-2,———arg-n);

Where control string is a string that contains formatted information, and
arg-1, arg-2 —— are arguments that represent the output data items.

Example:

#include<stdio.h>

main()

{

char item[20];

intpartno;

float cost;

———————

printf (“%s %d %f”, item, partno, cost);

} (Where %s %d %f are conversion characters.)

287Paper - II Programming in C

 2.6 Assignment Statement

Assignment statement can be defined as the statement through which the
value obtained from an expression can be stored in a variable.

 The general form of assignment statement is

 < variable name> = < arithmetic expression> ;

Example: sum = a + b + c;

 tot = s1 + s2 + s3;

 area = ½ * b* h;

2.7 I/O Control Structure (if, If-else, for, while, do-while)

Conditional Statements

The conditional expressions are mainly used for decision making. The
following statements are used to perform the task of the conditional operations.

a. if statement.

b. If-else statement. Or 2 way if statement

c. Nested else-if statement.

d. Nested if –else statement.

e. Switch statement.

a. if statement

The if statement is used to express conditional expressions. If the given
condition is true then it will execute the statements otherwise skip the statements.

The simple structure of ‘if’ statement is

i. If (< condtional expressione>)

statement-1;

(or)

ii. If (< condtional expressione>)

{

