
66

client?s business team. System Test ensures that expectations from an application

developer are met.

4. Acceptance Testing: Acceptance testing is related to the business requirement analysis

part. It includes testing the software product in user atmosphere. Acceptance tests reveal

the compatibility problems with the different systems, which is available within the

user atmosphere. It conjointly discovers the non-functional problems like load and

performance defects within the real user atmosphere.

When to use V-Model?

o When the requirement is well defined and not ambiguous.

o The V-shaped model should be used for small to medium-sized projects where

requirements are clearly defined and fixed.

o The V-shaped model should be chosen when sample technical resources are available

with essential technical expertise.

Advantage (Pros) of V-Model:

1. Easy to Understand.

2. Testing Methods like planning, test designing happens well before coding.

3. This saves a lot of time. Hence a higher chance of success over the waterfall model.

4. Avoids the downward flow of the defects.

5. Works well for small plans where requirements are easily understood.

Disadvantage (Cons) of V-Model:

1. Very rigid and least flexible.

2. Not a good for a complex project.

3. Software is developed during the implementation stage, so no early prototypes of the

software are produced.

4. If any changes happen in the midway, then the test documents along with the required

documents, has to be updated.

Spiral Model:
The spiral model, initially proposed by Boehm, is an evolutionary software process model that
couples the iterative feature of prototyping with the controlled and systematic aspects of the
linear sequential model. It implements the potential for rapid development of new versions of

67

the software. Using the spiral model, the software is developed in a series of incremental
releases. During the early iterations, the additional release may be a paper model or prototype.
During later iterations, more and more complete versions of the engineered system are
produced.

The Spiral Model is shown in fig:

Each cycle in the spiral is divided into four parts:

Objective setting: Each cycle in the spiral starts with the identification of purpose for that
cycle, the various alternatives that are possible for achieving the targets, and the constraints
that exists.

lay V

Risk Assessment and reduction: The next phase in the cycle is to calculate these various
alternatives based on the goals and constraints. The focus of evaluation in this stage is located
on the risk perception for the project.

Development and validation: The next phase is to develop strategies that resolve uncertainties
and risks. This process may include activities such as benchmarking, simulation, and
prototyping.

68

Planning: Finally, the next step is planned. The project is reviewed, and a choice made whether
to continue with a further period of the spiral. If it is determined to keep, plans are drawn up
for the next step of the project.

The development phase depends on the remaining risks. For example, if performance or user-
interface risks are treated more essential than the program development risks, the next phase
may be an evolutionary development that includes developing a more detailed prototype for
solving the risks.

The risk-driven feature of the spiral model allows it to accommodate any mixture of a
specification-oriented, prototype-oriented, simulation-oriented, or another type of approach.
An essential element of the model is that each period of the spiral is completed by a review that
includes all the products developed during that cycle, including plans for the next cycle. The
spiral model works for development as well as enhancement projects.

When to use Spiral Model?

o When deliverance is required to be frequent.

o When the project is large

o When requirements are unclear and complex

o When changes may require at any time

o Large and high budget projects

Advantages

o High amount of risk analysis

o Useful for large and mission-critical projects.

Disadvantages

o Can be a costly model to use.

o Risk analysis needed highly particular expertise

o Doesn't work well for smaller projects.

Prototyping Delivery:
The prototype model requires that before carrying out the development of actual software, a
working prototype of the system should be built. A prototype is a toy implementation of the
system. A prototype usually turns out to be a very crude version of the actual system, possible
exhibiting limited functional capabilities, low reliability, and inefficient performance as
compared to actual software. In many instances, the client only has a general view of what is
expected from the software product. In such a scenario where there is an absence of detailed
information regarding the input to the system, the processing needs, and the output
requirement, the prototyping model may be employed.

69

Steps of Prototype Model

1. Requirement Gathering and Analyst

2. Quick Decision

3. Build a Prototype

4. Assessment or User Evaluation

5. Prototype Refinement

6. Engineer Product

Advantage of Prototype Model

1. Reduce the risk of incorrect user requirement

70

2. Good where requirement are changing/uncommitted

3. Regular visible process aids management

4. Support early product marketing

5. Reduce Maintenance cost.

6. Errors can be detected much earlier as the system is made side by side.

Disadvantage of Prototype Model

1. An unstable/badly implemented prototype often becomes the final product.

2. Require extensive customer collaboration

o Costs customer money

o Needs committed customer

o Difficult to finish if customer withdraw

o May be too customer specific, no broad market

3. Difficult to know how long the project will last.

4. Easy to fall back into the code and fix without proper requirement analysis, design,

customer evaluation, and feedback.

5. Prototyping tools are expensive.

6. Special tools & techniques are required to build a prototype.

7. It is a time-consuming process.

Evolutionary Process Model

Evolutionary process model resembles the iterative enhancement model. The same phases are
defined for the waterfall model occurs here in a cyclical fashion. This model differs from the
iterative enhancement model in the sense that this does not require a useful product at the end
of each cycle. In evolutionary development, requirements are implemented by category rather
than by priority.

For example, in a simple database application, one cycle might implement the graphical user
Interface (GUI), another file manipulation, another queries and another updates. All four cycles
must complete before there is a working product available. GUI allows the users to interact
with the system, file manipulation allow the data to be saved and retrieved, queries allow user
to get out of the system, and updates allows users to put data into the system.

Benefits of Evolutionary Process Model

Use of EVO brings a significant reduction in risk for software projects.EVO can reduce costs
by providing a structured, disciplined avenue for experimentation.

71

EVO allows the marketing department access to early deliveries, facilitating the development
of documentation and demonstration.

Better fit the product to user needs and market requirements.

Manage project risk with the definition of early cycle content.

Uncover key issues early and focus attention appropriately.

Increase the opportunity to hit market windows.

Accelerate sales cycles with early customer exposure.

Increase management visibility of project progress.

Increase product team productivity and motivations.

Albrecht function point analysis:

Function point metrics provide a standardized method for measuring the various functions of a

basis of what the user requests and receives in return. Function point analysis is a standard
method for measuring software development from the user's point of view.

The Function Point measure originally conceived by Albrecht received increased popularity
with the inception of the International Function Point Users Group (IFPUG) in 1986. In 2002,
IFPUG Function Points became an international ISO standard ISO/IEC 20926.

What is a Function Point?

FP (Function Point) is the most widespread functional type metrics suitable for quantifying a
software application. It is based on five users identifiable logical "functions", which are divided
into two data function types and three transactional function types. For a given software
application, each of these elements is quantified and weighted, counting its characteristic
elements, such as file references or logical fields.

The resulting numbers (Unadjusted FP) are grouped into Added, Changed, or Deleted functions
sets, and combined with the Value Adjustment Factor (VAF) to obtain the final number of FP.
A distinct final formula is used for each count type: Application, Development Project, or
Enhancement Project.

72

Determine the number of components (EI, EO, EQ, ILF, and ELF)
 EI lementary processes in which derived

data passes across the boundary from outside to inside. In an example library database
system, enter an existing patron's library card number.

 EO derived
data passes across the boundary from inside to outside. In an example library database
system, display a list of books checked out to a patron.

 EQ
and output components that result in data retrieval from one or more internal logical
files and external interface files. In an example library database system, determine what
books are currently checked out to a patron.

 ILF identifiable groups of logically
related data that resides entirely within the applications boundary that are maintained
through external inputs. In an example library database system, the file of books in the
library.

 ELF s. These are user identifiable groups of logically
related data that are used for reference purposes only, and which reside entirely outside
the system. In an example library database system, the file that contains transactions in
the library's billing system.

Compute the Unadjusted Function Point Count (UFC)
 Rate each component as low, average, or high.
 For transactions (EI, EO, and EQ), the rating is based on FTR and DET.

o FTR
o DET -recognizable fields.
o Based on the following table, an EI that references 2 files and 10 data elements

would be ranked as average.

FTRs DETs

1-5 6-15 >15

0-1 Low Low Average

2-3 Low Average High

>3 Average High High

 For files (ILF and ELF), the rating is based on the RET and DET.
o RET -recognizable data elements in an ILF or ELF.
o DET -recognizable fields.
o Based on the following table, an ILF that contains 10 data elements and 5 fields

would be ranked as high.

RETs DETs

1-5 6-15 >15

73

1 Low Low Average

2-5 Low Average High

>5 Average High High

 Convert ratings into UFCs.

Rating Values

EO EQ EI ILF ELF

Low 4 3 3 7 5

Average 5 4 4 10 7

High 6 5 6 15 10

Compute the Final Function Point Count (FPC)
 Compute value adjustment factor (VAF) based on 14 general system

characteristics (GSC).

General System
Characteristic

Brief Description

GSC 1
Data
communications

How many communication facilities are there
to aid in the transfer or exchange of
information with the application or system?

GSC 2 Distributed data
processing

How are distributed data and processing
functions handled?

GSC 3
Performance

Was the response time or throughput required
by the user?

GSC 4 Heavily used
configuration

How heavily used is the current hardware
platform where the application will be
executed?

GSC 5
Transaction rate

How frequently are transactions executed daily,
weekly, monthly, etc.?

74

GSC 6 On-Line data
entry

What percentage of the information is entered
online?

GSC 7 End-user
efficiency

Was the application designed for end-user
efficiency?

GSC 8
On-Line update

How many ILFs are updated by online
transaction?

GSC 9 Complex
processing

Does the application have extensive logical or
mathematical processing?

GSC
10

Reusability
Was the application developed to meet one or

GSC
11

Installation ease
How difficult is conversion and installation?

GSC
12

Operational ease
How effective and/or automated are start-up,
back-up, and recovery procedures?

GSC
13 Multiple sites

Was the application specifically designed,
developed, and supported to be installed at
multiple sites for multiple organizations?

GSC
14

Facilitate change
Was the application specifically designed,
developed, and supported to facilitate change?

 Weigh each GSC on a scale of 0 to 5 based on whether it has no influence to strong
influence.

 Compute the FPC
FPC = UFC * (0.65+(sum(GSC) * .01))

Complexity

 Complexity of a problem
solution to the problem.

 Complexity of a solution

o Time complexity time.
o Space complexity

75

Measuring Complexity

One aspect of complexity is efficiency. It measures any software product that can be modeled
as an algorithm.

For example: If an algorithm for solving all instances of a particular problem
requires f(n) computations, then f(n) is asymptotically optimal, if for every other algorithm
with complexity g that solves the problem f is O(g). Then, the complexity of the given problem
is big - O of the asymptotically optimal algorit

