
691

20. # Next, the hare and tortoise move at same speed

until they agree

21. mu = 0

22. while tortoise != hare:

23. tortoise = f(tortoise)

24. hare = f(hare)

25. mu += 1

26. return lam, mu

Applications
Cyclic algorithms are used in message-based distributed

systems and large-scale cluster processing systems. It is also

mainly used to detect deadlocks in the concurrent system and

various cryptographic applications where the keys are used to

manage the messages with encrypted values.

Minimum Spanning Tree

A minimum spanning is defined as a subset of edges of a graph

having no cycles and is well connected with all the vertices so

that the minimum sum is availed through the edge weights. It

solely depends on the cost of the spanning tree and the

minimum span or least distance the vertex covers. There can be

many minimum spanning trees depending on the edge weight

and various other factors.

692

Pseudocode

1. Prim's Algorithm Example

2. ReachSet = {0};

3. UnReachSet = {1, 2, ..., N-1};

4. SpanningTree = {};

5. while (UnReachSet ? empty)

6. {

7. Find edge e = (x, y) such that:

8. 1. x ? ReachSet

9. 2. y ? UnReachSet

10. 3. e has smallest cost

11. SpanningTreeSpanningTree = SpanningTree ?

{e};

12. ReachSetReachSet = ReachSet ? {y};

13. UnReachSetUnReachSet = UnReachSet - {y};

14. }

Applications
Minimum spanning tree finds its application in the network

design and is popularly used in traveling salesman problems

in a data structure. It can also be used to find the minimum-cost

weighted perfect matching and multi-terminal minimum cut

problems. MST also finds its application in the field of image

and handwriting recognition and cluster analysis.

Topological sorting

Topological sorting of a graph follows the algorithm of

ordering the vertices linearly so that each directed graph having

vertex ordering ensures that the vertex comes before it. Users

can understand it more accurately by looking at the sample

image given below.

693

In the above example, you can visualize the ordering of the

unsorted graph and topologically sorted graph. The

topologically sorted graph ensures to sort vertex that comes in

the pathway.

Pseudocode

1. topological_sort(N, adj[N][N])

2. T = []

3. visited = []

4. in_degree = []

5. for i = 0 to N

6. in_degree[i] = visited[i] = 0

7. for i = 0 to N

8. for j = 0 to N

9. if adj[i][j] is TRUE

10. in_degree[j] = in_degree[j] + 1

11. for i = 0 to N

12. if in_degree[i] is 0

13. enqueue(Queue, i)

14. visited[i] = TRUE

15. while Queue is not Empty

16. vertex = get_front(Queue)

17. dequeue(Queue)

18. T.append(vertex)

19. for j = 0 to N

694

20. if adj[vertex][j] is TRUE and

visited[j] is FALSE

21. in_degree[j] = in_degree[j] - 1

22. if in_degree[j] is 0

23. enqueue(Queue, j)

24. visited[j] = TRUE

25. return T

Application
Topological sorting covers the room for application in Kahn's

and DFS algorithms. In real-life applications, topological

sorting is used in scheduling instructions and serialization of

data. It is also popularly used to determine the tasks that are to

be compiled and used to resolve dependencies in linkers.

Graph coloring

Graph coloring algorithms follow the approach of assigning

colors to the elements present in the graph under certain

conditions. The conditions are based on the techniques or

algorithms. Hence, vertex coloring is a commonly used

coloring technique followed here. First, in this method, you try

to color the vertex using k color, ensuring that two adjacent

vertexes should not have the same color. Other method includes

face coloring and edge coloring. Both of these methods should

also ensure that no edge or face should be inconsequent color.

The coloring of the graph is determined by knowing the

chromatic number, which is also the smaller number of colors

needed. Consider the below image to understand how it works.

695

Pseudocode

1. #include <iostream>

2. #include <list>

3. using namespace std;

4. // A class that represents an undirected graph

5. class Graph

6. {

7. int V; // No. of vertices

8. list<int> *adj; // A dynamic array of adjacency lists

9. public:

10. // Constructor and destructor

11. Graph(int V) { this->VV = V; adj = new

list<int>[V]; }

12. ~Graph() { delete [] adj; }

13. // function to add an edge to graph

14. void addEdge(int v, int w);

15. // Prints greedy coloring of the vertices

16. void greedyColoring();

17. };

18. void Graph::addEdge(int v, int w)

19. {

20. adj[v].push_back(w);

696

21. adj[w].push_back(v); // Note: the graph is

undirected

22. }

23. // Assigns colors (starting from 0) to all vertices and

prints

24. // the assignment of colors

25. void Graph::greedyColoring()

26. {

27. int result[V];

28. // Assign the first color to first vertex

29. result[0] = 0;

30. // Initialize remaining V-1 vertices as unassigned

31. for (int u = 1; u < V; u++)

32. result[u] = -1; // no color is assigned to u

33. // A temporary array to store the available colors.

True

34. // value of available[cr] would mean that the color

cr is

35. // assigned to one of its adjacent vertices

36. bool available[V];

37. for (int cr = 0; cr < V; cr++)

38. available[cr] = false;

39. // Assign colors to remaining V-1 vertices

40. for (int u = 1; u < V; u++)

41. {

42. // Process all adjacent vertices and flag their

colors

43. // as unavailable

44. list<int>::iterator i;

45. for (i = adj[u].begin(); i != adj[u].end(); ++i)

46. if (result[*i] != -1)

47. available[result[*i]] = true;

48. // Find the first available color

697

49. int cr;

50. for (cr = 0; cr < V; cr++)

51. if (available[cr] == false)

52. break;

53. result[u] = cr; // Assign the found color

54. // Reset the values back to false for the next

iteration

55. for (i = adj[u].begin(); i != adj[u].end(); ++i)

56. if (result[*i] != -1)

57. available[result[*i]] = false;

58. }

59. // print the result

60. for (int u = 0; u < V; u++)

61. cout << "Vertex " << u << " ---> Color "

62. << result[u] << endl;

63. }

64. // Driver program to test above function

65. int main()

66. {

67. Graph g1(5);

68. g1.addEdge(0, 1);

69. g1.addEdge(0, 2);

70. g1.addEdge(1, 2);

71. g1.addEdge(1, 3);

72. g1.addEdge(2, 3);

73. g1.addEdge(3, 4);

74. cout << "Coloring of graph 1 \n";

75. g1.greedyColoring();

76. Graph g2(5);

77. g2.addEdge(0, 1);

78. g2.addEdge(0, 2);

79. g2.addEdge(1, 2);

80. g2.addEdge(1, 4);

698

81. g2.addEdge(2, 4);

82. g2.addEdge(4, 3);

83. cout << "\nColoring of graph 2 \n";

84. g2.greedyColoring();

85. return 0;

86. }

Application
Graph coloring has vast applications in data structures as well

as in solving real-life problems. For example, it is used in

timetable scheduling and assigning radio frequencies for

mobile. It is also used in Sudoko and to check if the given graph

is bipartite. Graph coloring can also be used in geographical

maps to mark countries and states in different colors.

Maximum flow

The maximum flow algorithm is usually treated as a problem-

solving algorithm where the graph is modeled like a network

flow infrastructure. Hence, the maximum flow is determined

by finding the path of the flow that has the maximum flow

rate. The maximum flow rate is determined by augmenting

paths which is the total flow-based out of source node equal to

the flow in the sink node. Below is the illustration for the same.

1. function: DinicMaxFlow(Graph G,Node S,Node T):

2. Initialize flow in all edges to 0, F = 0

3. Construct level graph

4. while (there exists an augmenting path in level graph):

5. find blocking flow f in level graph

6. FF = F + f

7. Update level graph

8. return F

Applications

699

Like you, the maximum flow problem covers applications of

popular algorithms like the Ford-Fulkerson algorithm,

Edmonds-Karp algorithm, and Dinic's algorithm, like you saw

in the pseudocode given above. In real life, it finds its

applications in scheduling crews in flights and image

segmentation for foreground and background. It is also used in

games like basketball, where the score is set to a maximum

estimated value having the current division leader.

Matching

A matching algorithm or technique in the graph is defined as

the edges that no common vertices at all. Matching can be

termed maximum matching if the most significant number of

edges possibly matches with as many vertices as possible. It

follows a specific approach for determining full matches, as

shown in the below image.

Applications
Matching is used in an algorithm like the Hopcroft-Karp

algorithm and Blossom algorithm. It can also be used to solve

problems using a Hungarian algorithm that covers concepts of

700

matching. In real-life examples, matching can be used resource

allocation and travel optimization and some problems like

stable marriage and vertex cover problem.

Conclusion

In this article, you came across plenty of graph coloring

algorithms and techniques that find their day-to-day

applications in all instances of real life. You learned how to

implement them according to situations, and hence the pseudo

code helped you process the information strategically and

efficiently. Graph algorithms are considered an essential aspect

in the field confined not only to solve problems using data

structures but also in general tasks like Google Maps and Apple

Maps. However, a beginner might find it hard to implement

Graph algorithms because of their complex nature. Hence, it is

highly recommended to go through this article since it covers

everything from scratch

Kruskal’s Algorithm:

An algorithm to construct a Minimum Spanning Tree for a

connected weighted graph. It is a Greedy Algorithm. The

Greedy Choice is to put the smallest weight edge that does not

because a cycle in the MST constructed so far.

If the graph is not linked, then it finds a Minimum

Spanning Tree.

Steps for finding MST using Kruskal's Algorithm:

1. Arrange the edge of G in order of increasing weight.

2. Starting only with the vertices of G and proceeding

sequentially add each edge which does not result in a

cycle, until (n - 1) edges are used.

3. EXIT.

MST- KRUSKAL (G, w)

701

 1. A ← ∅

 2. for each vertex v ∈ V [G]

 3. do MAKE - SET (v)

 4. sort the edges of E into non decreasing order by weight w

 5. for each edge (u, v) ∈ E, taken in non decreasing order by

weight

 6. do if FIND-SET (μ) ≠ if FIND-SET (v)

 7. then A ← A ∪ {(u, v)}

 8. UNION (u, v)

 9. return A

Analysis: Where E is the number of edges in the graph and V

is the number of vertices, Kruskal's Algorithm can be shown to

run in O (E log E) time, or simply, O (E log V) time, all with

simple data structures. These running times are equivalent

because:

 E is at most V2 and log V2= 2 x log V is O (log V).

 If we ignore isolated vertices, which will each their

components of the minimum spanning tree, V ≤ 2 E, so

log V is O (log E).

Thus the total time is

1. O (E log E) = O (E log V).

For Example: Find the Minimum Spanning Tree of the

following graph using Kruskal's algorithm.

702

Solution: First we initialize the set A to the empty set and

create |v| trees, one containing each vertex with MAKE-SET

procedure. Then sort the edges in E into order by non-

decreasing weight.

There are 9 vertices and 12 edges. So MST formed (9-1) = 8

edges

Now, check for each edge (u, v) whether the endpoints u and v

belong to the same tree. If they do then the edge (u, v) cannot

be supplementary. Otherwise, the two vertices belong to

different trees, and the edge (u, v) is added to A, and the vertices

in two trees are merged in by union procedure.

Step1: So, first take (h, g) edge

703

Step 2: then (g, f) edge.

Step 3: then (a, b) and (i, g) edges are considered, and the forest

becomes

Step 4: Now, edge (h, i). Both h and i vertices are in the same

set. Thus it creates a cycle. So this edge is discarded.

 Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered,

and the forest becomes.

704

Step 5: In (e, f) edge both endpoints e and f exist in the same

tree so discarded this edge. Then (b, h) edge, it also creates a

cycle.

Step 6: After that edge (d, f) and the final spanning tree is

shown as in dark lines.

Step 7: This step will be required Minimum Spanning Tree

because it contains all the 9 vertices and (9 - 1) = 8 edges

1. e → f, b → h, d → f [cycle will be formed]

705

Minimum Cost MST

Prim’s Algorithm:

It is a greedy algorithm. It starts with an empty spanning tree.

The idea is to maintain two sets of vertices:

 Contain vertices already included in MST.

 Contain vertices not yet included.

At every step, it considers all the edges and picks the minimum

weight edge. After picking the edge, it moves the other

endpoint of edge to set containing MST.

Steps for finding MST using Prim's Algorithm:

1. Create MST set that keeps track of vertices already

included in MST.

2. Assign key values to all vertices in the input graph.

Initialize all key values as INFINITE (∞). Assign key

values like 0 for the first vertex so that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum

key value. Include 'u'to MST set.

b. Update the key value of all adjacent vertices of u. To

update, iterate through all adjacent vertices. For every adjacent

vertex v, if the weight of edge u.v less than the previous key

value of v, update key value as a weight of u.v.

MST-PRIM (G, w, r)

 1. for each u ∈ V [G]

 2. do key [u] ← ∞

 3. π [u] ← NIL

 4. key [r] ← 0

706

 5. Q ← V [G]

 6. While Q ? ∅

 7. do u ← EXTRACT - MIN (Q)

 8. for each v ∈ Adj [u]

 9. do if v ∈ Q and w (u, v) < key [v]

 10. then π [v] ← u

 11. key [v] ← w (u, v)

Example: Generate minimum cost spanning tree for the

following graph using Prim's algorithm.

Solution: In Prim's algorithm, first we initialize the priority

Queue Q. to contain all the vertices and the key of each vertex

to ∞ except for the root, whose key is set to 0. Suppose 0 vertex

is the root, i.e., r. By EXTRACT - MIN (Q) procure, now u = r

and Adj [u] = {5, 1}.

707

Removing u from set Q and adds it to set V - Q of vertices in

the tree. Now, update the key and π fields of every vertex v

adjacent to u but not in a tree.

1. Taking 0 as starting vertex

2. Root = 0

3. Adj [0] = 5, 1

4. Parent, π [5] = 0 and π [1] = 0

5. Key [5] = ∞ and key [1] = ∞

6. w [0, 5) = 10 and w (0,1) = 28

7. w (u, v) < key [5] , w (u, v) < key [1]

8. Key [5] = 10 and key [1] = 28

9. So update key value of 5 and 1 is:

708

Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10

which is minimum so u = 5.

1. Adj [5] = {0, 4} and 0 is already in heap

2. Taking 4, key [4] = ∞ π [4] = 5

3. (u, v) < key [v] then key [4] = 25

4. w (5,4) = 25

5. w (5,4) < key [4]

6. date key value and parent of 4.

Now remove 4 because key [4] = 25 which is minimum, so u

=4

1. Adj [4] = {6, 3}

2. Key [3] = ∞ key [6] = ∞

3. w (4,3) = 22 w (4,6) = 24

4. w (u, v) < key [v] w (u, v) < key [v]

5. w (4,3) < key [3] w (4,6) < key [6]

709

Update key value of key [3] as 22 and key [6] as 24.

And the parent of 3, 6 as 4.

1. π[3]= 4 π[6]= 4

1. u = EXTRACT_MIN (3, 6) [key [3] < key [6]]

2. u = 3 i.e. 22 < 24

Now remove 3 because key [3] = 22 is minimum so u =3.

1. Adj [3] = {4, 6, 2}

2. 4 is already in heap

3. 4 ≠ Q key [6] = 24 now becomes key [6] = 18

4. Key [2] = ∞ key [6] = 24

5. w (3, 2) = 12 w (3, 6) = 18

6. w (3, 2) < key [2] w (3, 6) < key [6]

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent

of 2 and 6 is 3.

710

1. π [2] = 3 π[6]=3

Now by EXTRACT_MIN (Q) Removes 2, because key [2] =

12 is minimum.

1. u = EXTRACT_MIN (2, 6)

2. u = 2 [key [2] < key [6]]

3. 12 < 18

4. Now the root is 2

5. Adj [2] = {3, 1}

6. 3 is already in a heap

7. Taking 1, key [1] = 28

8. w (2,1) = 16

9. w (2,1) < key [1]

So update key value of key [1] as 16 and its parent as 2.

1. π[1]= 2

711

Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16

is minimum.

1. Adj [1] = {0, 6, 2}

2. 0 and 2 are already in heap.

3. Taking 6, key [6] = 18

4. w [1, 6] = 14

5. w [1, 6] < key [6]

Update key value of 6 as 14 and its parent as 1.

1. Π [6] = 1

Now all the vertices have been spanned, Using above the table

we get Minimum Spanning Tree.

1. 0 → 5 → 4 → 3 → 2 → 1 → 6

2. [Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1]

=2, Π [6] =1]

712

Thus the final spanning Tree is

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99

