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20.     # Next, the hare and tortoise move at same speed 

until they agree   

21.     mu = 0   

22.     while tortoise != hare:   

23.         tortoise = f(tortoise)   

24.         hare = f(hare)   

25.         mu += 1   

26.     return lam, mu   

Applications 
Cyclic algorithms are used in message-based distributed 

systems and large-scale cluster processing systems. It is also 

mainly used to detect deadlocks in the concurrent system and 

various cryptographic applications where the keys are used to 

manage the messages with encrypted values. 

Minimum Spanning Tree 

A minimum spanning is defined as a subset of edges of a graph 

having no cycles and is well connected with all the vertices so 

that the minimum sum is availed through the edge weights. It 

solely depends on the cost of the spanning tree and the 

minimum span or least distance the vertex covers. There can be 

many minimum spanning trees depending on the edge weight 

and various other factors. 
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Pseudocode 

1. Prim's Algorithm Example   

2. ReachSet = {0};        

3.    UnReachSet = {1, 2, ..., N-1};   

4.    SpanningTree = {};   

5.    while ( UnReachSet ? empty )   

6.    {   

7.       Find edge e = (x, y) such that:   

8.          1. x ? ReachSet   

9.      2. y ? UnReachSet   

10.      3. e has smallest cost   

11.       SpanningTreeSpanningTree = SpanningTree ? 

{e};   

12.       ReachSetReachSet   = ReachSet ? {y};   

13.       UnReachSetUnReachSet = UnReachSet - {y};   

14.    }   

Applications 
Minimum spanning tree finds its application in the network 

design and is popularly used in traveling salesman problems 

in a data structure. It can also be used to find the minimum-cost 

weighted perfect matching and multi-terminal minimum cut 

problems. MST also finds its application in the field of image 

and handwriting recognition and cluster analysis. 

Topological sorting 

Topological sorting of a graph follows the algorithm of 

ordering the vertices linearly so that each directed graph having 

vertex ordering ensures that the vertex comes before it. Users 

can understand it more accurately by looking at the sample 

image given below. 
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In the above example, you can visualize the ordering of the 

unsorted graph and topologically sorted graph. The 

topologically sorted graph ensures to sort vertex that comes in 

the pathway. 

Pseudocode 

1. topological_sort(N, adj[N][N])   

2.         T = []   

3.         visited = []   

4.         in_degree = []   

5.         for i = 0 to N   

6.                 in_degree[i] = visited[i] = 0   

7.         for i = 0 to N   

8.                 for j = 0 to N   

9.                         if adj[i][j] is TRUE   

10.                                 in_degree[j] = in_degree[j] + 1   

11.         for i = 0 to N   

12.                 if in_degree[i] is 0   

13.                         enqueue(Queue, i)   

14.                         visited[i] = TRUE   

15.         while Queue is not Empty   

16.                 vertex = get_front(Queue)   

17.                 dequeue(Queue)   

18.                 T.append(vertex)   

19.                 for j = 0 to N   



694 
 

20.                         if adj[vertex][j] is TRUE and 

visited[j] is FALSE   

21.                                 in_degree[j] = in_degree[j] - 1   

22.                                 if in_degree[j] is 0   

23.                                         enqueue(Queue, j)   

24.                                         visited[j] = TRUE   

25.         return T   

Application 
Topological sorting covers the room for application in Kahn's 

and DFS algorithms. In real-life applications, topological 

sorting is used in scheduling instructions and serialization of 

data. It is also popularly used to determine the tasks that are to 

be compiled and used to resolve dependencies in linkers. 

Graph coloring 

Graph coloring algorithms follow the approach of assigning 

colors to the elements present in the graph under certain 

conditions. The conditions are based on the techniques or 

algorithms. Hence, vertex coloring is a commonly used 

coloring technique followed here. First, in this method, you try 

to color the vertex using k color, ensuring that two adjacent 

vertexes should not have the same color. Other method includes 

face coloring and edge coloring. Both of these methods should 

also ensure that no edge or face should be inconsequent color. 

The coloring of the graph is determined by knowing the 

chromatic number, which is also the smaller number of colors 

needed. Consider the below image to understand how it works. 
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Pseudocode 

1. #include <iostream>   

2. #include <list>   

3. using namespace std;    

4. // A class that represents an undirected graph   

5. class Graph   

6. {   

7.     int V;    // No. of vertices   

8.     list<int> *adj;    // A dynamic array of adjacency lists   

9. public:   

10.     // Constructor and destructor   

11.     Graph(int V)   { this->VV = V; adj = new 

list<int>[V]; }   

12.     ~Graph()       { delete [] adj; }   

13.     // function to add an edge to graph   

14.     void addEdge(int v, int w);   

15.     // Prints greedy coloring of the vertices   

16.     void greedyColoring();   

17. };   

18. void Graph::addEdge(int v, int w)   

19. {   

20.     adj[v].push_back(w);   
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21.     adj[w].push_back(v);  // Note: the graph is 

undirected   

22. }   

23. // Assigns colors (starting from 0) to all vertices and 

prints   

24. // the assignment of colors   

25. void Graph::greedyColoring()   

26. {   

27.     int result[V];    

28.     // Assign the first color to first vertex   

29.     result[0]  = 0;    

30.     // Initialize remaining V-1 vertices as unassigned   

31.     for (int u = 1; u < V; u++)   

32.         result[u] = -1;  // no color is assigned to u   

33.     // A temporary array to store the available colors. 

True   

34.     // value of available[cr] would mean that the color 

cr is   

35.     // assigned to one of its adjacent vertices   

36.     bool available[V];   

37.     for (int cr = 0; cr < V; cr++)   

38.         available[cr] = false;    

39.     // Assign colors to remaining V-1 vertices   

40.     for (int u = 1; u < V; u++)   

41.     {   

42.         // Process all adjacent vertices and flag their 

colors   

43.         // as unavailable   

44.         list<int>::iterator i;   

45.         for (i = adj[u].begin(); i != adj[u].end(); ++i)   

46.             if (result[*i] != -1)   

47.                 available[result[*i]] = true;    

48.         // Find the first available color   
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49.         int cr;   

50.         for (cr = 0; cr < V; cr++)   

51.             if (available[cr] == false)   

52.                 break;    

53.         result[u] = cr; // Assign the found color   

54.         // Reset the values back to false for the next 

iteration   

55.         for (i = adj[u].begin(); i != adj[u].end(); ++i)   

56.             if (result[*i] != -1)   

57.                 available[result[*i]] = false;   

58.     }   

59.     // print the result   

60.     for (int u = 0; u < V; u++)   

61.         cout << "Vertex " << u << " --->  Color "   

62.              << result[u] << endl;   

63. }   

64. // Driver program to test above function   

65. int main()   

66. {   

67.     Graph g1(5);   

68.     g1.addEdge(0, 1);   

69.     g1.addEdge(0, 2);   

70.     g1.addEdge(1, 2);   

71.     g1.addEdge(1, 3);   

72.     g1.addEdge(2, 3);   

73.     g1.addEdge(3, 4);   

74.     cout << "Coloring of graph 1 \n";   

75.     g1.greedyColoring();    

76.     Graph g2(5);   

77.     g2.addEdge(0, 1);   

78.     g2.addEdge(0, 2);   

79.     g2.addEdge(1, 2);   

80.     g2.addEdge(1, 4);   
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81.     g2.addEdge(2, 4);   

82.     g2.addEdge(4, 3);   

83.     cout << "\nColoring of graph 2 \n";   

84.     g2.greedyColoring();   

85.     return 0;   

86. }   

Application 
Graph coloring has vast applications in data structures as well 

as in solving real-life problems. For example, it is used in 

timetable scheduling and assigning radio frequencies for 

mobile. It is also used in Sudoko and to check if the given graph 

is bipartite. Graph coloring can also be used in geographical 

maps to mark countries and states in different colors. 

Maximum flow 

The maximum flow algorithm is usually treated as a problem-

solving algorithm where the graph is modeled like a network 

flow infrastructure. Hence, the maximum flow is determined 

by finding the path of the flow that has the maximum flow 

rate. The maximum flow rate is determined by augmenting 

paths which is the total flow-based out of source node equal to 

the flow in the sink node. Below is the illustration for the same. 

1. function: DinicMaxFlow(Graph G,Node S,Node T):   

2.     Initialize flow in all edges to 0, F = 0   

3.     Construct level graph   

4.     while (there exists an augmenting path in level graph):   

5.         find blocking flow f in level graph   

6.         FF = F + f   

7.         Update level graph   

8.     return F   

Applications 
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Like you, the maximum flow problem covers applications of 

popular algorithms like the Ford-Fulkerson algorithm, 

Edmonds-Karp algorithm, and Dinic's algorithm, like you saw 

in the pseudocode given above. In real life, it finds its 

applications in scheduling crews in flights and image 

segmentation for foreground and background. It is also used in 

games like basketball, where the score is set to a maximum 

estimated value having the current division leader. 

Matching 

A matching algorithm or technique in the graph is defined as 

the edges that no common vertices at all. Matching can be 

termed maximum matching if the most significant number of 

edges possibly matches with as many vertices as possible. It 

follows a specific approach for determining full matches, as 

shown in the below image. 

 

Applications 
Matching is used in an algorithm like the Hopcroft-Karp 

algorithm and Blossom algorithm. It can also be used to solve 

problems using a Hungarian algorithm that covers concepts of 
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matching. In real-life examples, matching can be used resource 

allocation and travel optimization and some problems like 

stable marriage and vertex cover problem. 

Conclusion 

In this article, you came across plenty of graph coloring 

algorithms and techniques that find their day-to-day 

applications in all instances of real life. You learned how to 

implement them according to situations, and hence the pseudo 

code helped you process the information strategically and 

efficiently. Graph algorithms are considered an essential aspect 

in the field confined not only to solve problems using data 

structures but also in general tasks like Google Maps and Apple 

Maps. However, a beginner might find it hard to implement 

Graph algorithms because of their complex nature. Hence, it is 

highly recommended to go through this article since it covers 

everything from scratch 

 

Kruskal’s Algorithm: 

An algorithm to construct a Minimum Spanning Tree for a 

connected weighted graph. It is a Greedy Algorithm. The 

Greedy Choice is to put the smallest weight edge that does not 

because a cycle in the MST constructed so far. 

If the graph is not linked, then it finds a Minimum 

Spanning Tree. 

Steps for finding MST using Kruskal's Algorithm: 

1. Arrange the edge of G in order of increasing weight. 

2. Starting only with the vertices of G and proceeding 

sequentially add each edge which does not result in a 

cycle, until (n - 1) edges are used. 

3. EXIT. 

MST- KRUSKAL (G, w) 
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 1. A ← ∅ 

 2. for each vertex v ∈ V [G] 

 3. do MAKE - SET (v) 

 4. sort the edges of E into non decreasing order by weight w 

 5. for each edge (u, v) ∈ E, taken in non decreasing order by 

weight 

 6. do if FIND-SET (μ) ≠ if FIND-SET (v) 

 7. then A  ←  A ∪ {(u, v)} 

 8. UNION (u, v) 

 9. return A 

 

Analysis: Where E is the number of edges in the graph and V 

is the number of vertices, Kruskal's Algorithm can be shown to 

run in O (E log E) time, or simply, O (E log V) time, all with 

simple data structures. These running times are equivalent 

because: 

 E is at most V2 and log V2= 2 x log V is O (log V). 

 If we ignore isolated vertices, which will each their 

components of the minimum spanning tree, V ≤ 2 E, so 

log V is O (log E). 

Thus the total time is 

1. O (E log E) = O (E log V).   

For Example: Find the Minimum Spanning Tree of the 

following graph using Kruskal's algorithm. 
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Solution: First we initialize the set A to the empty set and 

create |v| trees, one containing each vertex with MAKE-SET 

procedure. Then sort the edges in E into order by non-

decreasing weight. 

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 

edges 

 

Now, check for each edge (u, v) whether the endpoints u and v 

belong to the same tree. If they do then the edge (u, v) cannot 

be supplementary. Otherwise, the two vertices belong to 

different trees, and the edge (u, v) is added to A, and the vertices 

in two trees are merged in by union procedure. 

Step1: So, first take (h, g) edge 
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Step 2: then (g, f) edge. 

 

Step 3: then (a, b) and (i, g) edges are considered, and the forest 

becomes 

 

Step 4: Now, edge (h, i). Both h and i vertices are in the same 

set. Thus it creates a cycle. So this edge is discarded. 

        Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, 

and the forest becomes. 
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Step 5: In (e, f) edge both endpoints e and f exist in the same 

tree so discarded this edge. Then (b, h) edge, it also creates a 

cycle. 

Step 6: After that edge (d, f) and the final spanning tree is 

shown as in dark lines. 

 

Step 7: This step will be required Minimum Spanning Tree 

because it contains all the 9 vertices and (9 - 1) = 8 edges 

1. e → f,  b → h,  d → f [cycle will be formed]   
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Minimum Cost MST 

Prim’s Algorithm: 

It is a greedy algorithm. It starts with an empty spanning tree. 

The idea is to maintain two sets of vertices: 

 Contain vertices already included in MST. 

 Contain vertices not yet included. 

At every step, it considers all the edges and picks the minimum 

weight edge. After picking the edge, it moves the other 

endpoint of edge to set containing MST. 

Steps for finding MST using Prim's Algorithm: 

1. Create MST set that keeps track of vertices already 

included in MST. 

2. Assign key values to all vertices in the input graph. 

Initialize all key values as INFINITE (∞). Assign key 

values like 0 for the first vertex so that it is picked first. 

3. While MST set doesn't include all vertices. 

a. Pick vertex u which is not is MST set and has minimum 

key value. Include 'u'to MST set. 

b. Update the key value of all adjacent vertices of u. To 

update, iterate through all adjacent vertices. For every adjacent 

vertex v, if the weight of edge u.v less than the previous key 

value of v, update key value as a weight of u.v. 

MST-PRIM (G, w, r) 

 1. for each u ∈ V [G] 

 2. do key [u] ← ∞ 

 3. π [u] ← NIL 

 4. key [r] ← 0 
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 5. Q ← V [G] 

 6. While Q ? ∅ 

 7. do u ← EXTRACT - MIN (Q) 

 8. for each v ∈ Adj [u] 

 9. do if v ∈ Q and w (u, v) < key [v] 

 10. then π [v] ← u 

 11. key [v] ← w (u, v) 

 

Example: Generate minimum cost spanning tree for the 

following graph using Prim's algorithm. 

 

Solution: In Prim's algorithm, first we initialize the priority 

Queue Q. to contain all the vertices and the key of each vertex 

to ∞ except for the root, whose key is set to 0. Suppose 0 vertex 

is the root, i.e., r. By EXTRACT - MIN (Q) procure, now u = r 

and Adj [u] = {5, 1}. 
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Removing u from set Q and adds it to set V - Q of vertices in 

the tree. Now, update the key and π fields of every vertex v 

adjacent to u but not in a tree. 

 

1. Taking 0 as starting vertex   

2.   Root = 0   

3.     Adj [0] = 5, 1   

4.   Parent, π [5] = 0 and π [1] = 0   

5.       Key [5] = ∞ and key [1] = ∞   

6.   w [0, 5) = 10  and w (0,1) = 28   

7.    w (u, v) < key [5] , w (u, v) < key [1]   

8.         Key [5] = 10 and key [1] = 28   

9. So update key value of 5 and 1 is:   
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Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10 

which is minimum so u = 5. 

1. Adj [5] = {0, 4} and 0 is already in heap   

2. Taking 4, key [4] = ∞      π [4] = 5   

3. (u, v) < key [v] then key [4] = 25   

4. w (5,4) = 25   

5. w (5,4) < key [4]   

6. date key value and parent of 4.   

 

 

 

Now remove 4 because key [4] = 25 which is minimum, so u 

=4 

1. Adj [4] = {6, 3}   

2. Key [3] = ∞         key [6] = ∞   

3. w (4,3) = 22        w (4,6) = 24   

4. w (u, v) < key [v]    w (u, v) < key [v]   

5. w (4,3) < key [3]      w (4,6) < key [6]   
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Update key value of key [3] as 22 and key [6] as 24. 

And the parent of 3, 6 as 4. 

1. π[3]= 4       π[6]= 4    

 

 

1. u = EXTRACT_MIN (3, 6)            [key [3] < key [6]]   

2. u = 3              i.e.  22 < 24   

Now remove 3 because key [3] = 22 is minimum so u =3. 

 

1. Adj [3] = {4, 6, 2}   

2.   4 is already in heap   

3.   4 ≠ Q key [6] = 24 now becomes key [6] = 18   

4.   Key [2] = ∞            key [6] = 24   

5.   w (3, 2) = 12          w (3, 6) = 18   

6.   w (3, 2) < key [2]         w (3, 6) < key [6]   

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent 

of 2 and 6 is 3. 
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1. π [2] = 3      π[6]=3   

Now by EXTRACT_MIN (Q) Removes 2, because key [2] = 

12 is minimum. 

 

1. u = EXTRACT_MIN (2, 6)   

2. u = 2          [key [2] < key [6]]   

3.         12 < 18   

4. Now the root is 2    

5. Adj [2] = {3, 1}   

6.    3 is already in a heap   

7. Taking 1, key [1] = 28   

8.    w (2,1) = 16   

9.    w (2,1) < key [1]   

So update key value of key [1] as 16 and its parent as 2. 

1. π[1]= 2   
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Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16 

is minimum. 

1. Adj [1] = {0, 6, 2}   

2.     0 and 2 are already in heap.   

3. Taking 6, key [6] = 18   

4.    w [1, 6] = 14   

5.    w [1, 6] < key [6]   

Update key value of 6 as 14 and its parent as 1. 

1. Π [6] = 1   

 

 

Now all the vertices have been spanned, Using above the table 

we get Minimum Spanning Tree. 

1. 0 → 5 → 4 → 3 → 2 → 1 → 6   

2. [Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1] 

=2, Π [6] =1]   
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Thus the final spanning Tree is 

 

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99 
 

 

 

 

 

 

  

 


