
682

in Facebook, each person is represented with a vertex(or node).

Each node is a structure and contains information like person

id, name, gender, locale etc.

Traversal algorithms And complexity analysis:

Graph Algorithms

In this article, you would be learning a brief explanation of

some of the most used graph algorithms, which have massive

applications in today's words. Graphs cover most high-level

data structure techniques that one experiences while

implementing them and to know which graph algorithm is best

683

for the moment effectively is what you would be learning here.

First, let's get a clear idea from the very basics about graphs.

What is a Graph?

A graph is a unique data structure in programming that

consists of finite sets of nodes or vertices and a set of edges that

connect these vertices to them. At this moment, adjacent

vertices can be called those vertices that are connected to the

same edge with each other. In simple terms, a graph is a visual

representation of vertices and edges sharing some connection

or relationship. Although there are plenty of graph algorithms

that you might have been familiar with, only some of them are

put to use. The reason for this is simple as the standard graph

algorithms are designed in such a way to solve millions of

problems with just a few lines of logically coded technique. To

some extent, one perfect algorithm is solely optimized to

achieve such efficient results.

Types of Graphs

There are various types of graph algorithms that you would be

looking at in this article but before that, let's look at some types

of terms to imply the fundamental variations between them.

Order: Order defines the total number of vertices present in

the graph.

Size: Size defines the number of edges present in the graph.

Self-loop: It is the edges that are connected from a vertex to

itself.

Isolated vertex: It is the vertex that is not connected to any

other vertices in the graph.

Vertex degree: It is defined as the number of edges incident to

a vertex in a graph.

Weighted graph: A graph having value or weight of vertices.

Unweighted graph: A graph having no value or weight of

vertices.

Directed graph: A graph having a direction indicator.

684

Undirected graph: A graph where no directions are defined.

Let's now carry forward the main discussion and learn about

different types of graph algorithms.

Breadth-First Search

Traversing or searching is one of the most used operations that

are undertaken while working on graphs. Therefore, in

breadth-first-search (BFS), you start at a particular vertex,

and the algorithm tries to visit all the neighbors at the given

depth before moving on to the next level of traversal of vertices.

Unlike trees, graphs may contain cyclic paths where the first

and last vertices are remarkably the same always. Thus, in BFS,

you need to keep note of all the track of the vertices you are

visiting. To implement such an order, you use a queue data

structure which First-in, First-out approach. To understand this,

see the image given below.

685

Algorithm

1. Start putting anyone vertices from the graph at the back of

the queue.

2. First, move the front queue item and add it to the list of

the visited node.

3. Next, create nodes of the adjacent vertex of that list and

add them which have not been visited yet.

4. Keep repeating steps two and three until the queue is

found to be empty.

Pseudocode

1. Set all nodes to "not visited";

2. q = new Queue();

3. q.enqueue(initial node);

4. while (q ? empty) do

5. {

6. x = q.dequeue();

7. if (x has not been visited)

8. {

9. visited[x] = true; // Visit node x !

10.

686

11. for (every edge (x, y) /* we are using all edges

! */)

12. if (y has not been visited)

13. q.enqueue(y); // Use the edge (x,y) !!!

14. }

15. }

Complexity: 0(V+E) where V is vertices and E is edges.

Applications
BFS algorithm has various applications. For example, it is used

to determine the shortest path and minimum spanning tree.

It is also used in web crawlers to creates web page indexes. It

is also used as powering search engines on social media

networks and helps to find out peer-to-peer networks in

BitTorrent.

Depth-first search

In depth-first-search (DFS), you start by particularly from the

vertex and explore as much as you along all the branches before

backtracking. In DFS, it is essential to keep note of the tracks

of visited nodes, and for this, you use stack data structure.

Algorithm

687

1. Start by putting one of the vertexes of the graph on the

stack's top.

2. Put the top item of the stack and add it to the visited vertex

list.

3. Create a list of all the adjacent nodes of the vertex and then

add those nodes to the unvisited at the top of the stack.

4. Keep repeating steps 2 and 3, and the stack becomes

empty.

Pseudocode

1. DFS(G,v) (v is the vertex where the search starts)

2. Stack S := {}; (start with an empty stack)

3. for each vertex u, set visited[u] := false;

4. push S, v;

5. while (S is not empty) do

6. u := pop S;

7. if (not visited[u]) then

8. visited[u] := true;

9. for each unvisited neighbour w of uu

10. push S, w;

11. end if

12. end while

13. END DFS()

Applications
DFS finds its application when it comes to finding paths

between two vertices and detecting cycles. Also, topological

sorting can be done using the DFS algorithm easily. DFS is also

used for one-solution puzzles.

Dijkstra's shortest path algorithm

Dijkstra's shortest path algorithm works to find the minor path

from one vertex to another. The sum of the vertex should be

such that their sum of weights that have been traveled should

688

output minimum. The shortest path algorithm is a highly

curated algorithm that works on the concept of receiving

efficiency as much as possible. Consider the below diagram.

Algorithm

1. Set all the vertices to infinity, excluding the source vertex.

2. Push the source in the form (distance, vertex) and put it in

the min-priority queue.

3. From the priority, queue pop out the minimum distant

vertex from the source vertex.

4. Update the distance after popping out the minimum distant

vertex and calculate the vertex distance using (vertex

distance + weight < following vertex distance).

5. If you find that the visited vertex is popped, move ahead

without using it.

6. Apply the steps until the priority queue is found to be

empty.

Pseudocode

1. function dijkstra(G, S)

2. for each vertex V in G

689

3. distance[V] <- infinite

4. previous[V] <- NULL

5. If V != S, add V to Priority Queue Q

6. distance[S] <- 0

7. while Q IS NOT EMPTY

8. U <- Extract MIN from Q

9. for each unvisited neighbour V of U

10. tempDistance <- distance[U] +

edge_weight(U, V)

11. if tempDistance < distance[V]

12. distance[V] <- tempDistance

13. previous[V] <- U

14. return distance[], previous[]

Applications
Dijkstra's shortest path algorithm is used in finding the distance

of travel from one location to another, like Google Maps or

Apple Maps. In addition, it is highly used in networking to

outlay min-delay path problems and abstract machines to

identify choices to reach specific goals like the number game

or move to win a match.

Cycle detection

A cycle is defined as a path in graph algorithms where the first

and last vertices are usually considered. For example, if you

start from a vertex and travel along a random path, you might

reach the exact point where you eventually started. Hence, this

forms a chain or cyclic algorithm to cover along with all the

nodes present on traversing. Therefore, cycle detection is based

on detecting this kind of cycle. Consider the below image.

690

Pseudocode

1. Brent's Cycle Algorithm Example

2. def brent(f, x0):

3. # main phase: search successive powers of two

4. power = lam = 1

5. tortoise = x0

6. hare = f(x0) # f(x0) is the element/node next to x0.

7. while tortoise != hare:

8. if power == lam: # time to start a new power of

two?

9. tortoise = hare

10. power *= 2

11. lam = 0

12. hare = f(hare)

13. lam += 1

14. # Find the position of the first repetition of length

?

15. tortoise = hare = x0

16. for i in range(lam):

17. # range(lam) produces a list with the values 0, 1,

... , lam-1

18. hare = f(hare)

19. # The distance between the hare and tortoise is

now ?.

691

20. # Next, the hare and tortoise move at same speed

until they agree

21. mu = 0

22. while tortoise != hare:

23. tortoise = f(tortoise)

24. hare = f(hare)

25. mu += 1

26. return lam, mu

Applications
Cyclic algorithms are used in message-based distributed

systems and large-scale cluster processing systems. It is also

mainly used to detect deadlocks in the concurrent system and

various cryptographic applications where the keys are used to

manage the messages with encrypted values.

Minimum Spanning Tree

A minimum spanning is defined as a subset of edges of a graph

having no cycles and is well connected with all the vertices so

that the minimum sum is availed through the edge weights. It

solely depends on the cost of the spanning tree and the

minimum span or least distance the vertex covers. There can be

many minimum spanning trees depending on the edge weight

and various other factors.

