
664 
 

Performance and Comparison among all the methods: 

Important properties of different sorting techniques including 

their complexity, stability and memory constraints. Before 

understanding this article, you should understand basics of 

different sorting techniques (See : Sorting Techniques).  

Time complexity Analysis –  

We have discussed the best, average and worst case complexity 

of different sorting techniques with possible scenarios.  

Comparison based sorting –  

In comparison based sorting, elements of an array are compared 

with each other to find the sorted array.  

  

 Bubble sort and Insertion sort –  

Average and worst case time complexity: n^2  

Best case time complexity: n when array is already 

sorted.  

Worst case: when the array is reverse sorted.  

  

 Selection sort –  

Best, average and worst case time complexity: n^2 

which is independent of distribution of data.  

  

 Merge sort –  

Best, average and worst case time complexity: nlogn 

which is independent of distribution of data.  

  

 Heap sort –  

Best, average and worst case time complexity: nlogn 

which is independent of distribution of data.  

  

 Quick sort –  

It is a divide and conquer approach with recurrence 



665 
 

relation:  

  

T(n) = T(k) + T(n-k-1) + cn 

 Worst case: when the array is sorted or reverse sorted, 

the partition algorithm divides the array in two 

subarrays with 0 and n-1 elements. Therefore,  

  

T(n) = T(0) + T(n-1) + cn 

Solving this we get, T(n) = O(n^2) 

 Best case and Average case: On an average, the 

partition algorithm divides the array in two subarrays 

with equal size. Therefore,  

  

T(n) = 2T(n/2) + cn 

Solving this we get, T(n) = O(nlogn) 

 

Non-comparison based sorting –  

In non-comparison based sorting, elements of array are not 

compared with each other to find the sorted array.  

  

 Radix sort –  

Best, average and worst case time complexity: nk 

where k is the maximum number of digits in elements 

of array.  

  



666 
 

 Count sort –  

Best, average and worst case time complexity: n+k 

where k is the size of count array.  

  

 Bucket sort –  

Best and average time complexity: n+k where k is the 

number of buckets.  

Worst case time complexity: n^2 if all elements 

belong to same bucket.  

  

In-place/Outplace technique –  

A sorting technique is inplace if it does not use any extra 

memory to sort the array.  

Among the comparison based techniques discussed, only 

merge sort is outplaced technique as it requires an extra array 

to merge the sorted subarrays.  

Among the non-comparison based techniques discussed, all are 

outplaced techniques. Counting sort uses a counting array and 

bucket sort uses a hash table for sorting the array.  

Online/Offline technique –  

A sorting technique is considered Online if it can accept new 

data while the procedure is ongoing i.e. complete data is not 

required to start the sorting operation.  

Among the comparison based techniques discussed, only 

Insertion Sort qualifies for this because of the underlying 

algorithm it uses i.e. it processes the array (not just elements) 

from left to right and if new elements are added to the right, it 

doesn’t impact the ongoing operation.  

Stable/Unstable technique –  

A sorting technique is stable if it does not change the order of 

elements with the same value.  



667 
 

Out of comparison based techniques, bubble sort, insertion sort 

and merge sort are stable techniques. Selection sort is unstable 

as it may change the order of elements with the same value. For 

example, consider the array 4, 4, 1, 3.  

In the first iteration, the minimum element found is 1 and it is 

swapped with 4 at 0th position. Therefore, the order of 4 with 

respect to 4 at the 1st position will change. Similarly, quick sort 

and heap sort are also unstable.  

Out of non-comparison based techniques, Counting sort and 

Bucket sort are stable sorting techniques whereas radix sort 

stability depends on the underlying algorithm used for sorting.  

Analysis of sorting techniques :  

  

 When the array is almost sorted, insertion sort can be 

preferred. 

 When order of input is not known, merge sort is 

preferred as it has worst case time complexity of nlogn 

and it is stable as well. 

 When the array is sorted, insertion and bubble sort gives 

complexity of n but quick sort gives complexity of n^2. 

Que – 1. Which sorting algorithm will take the least time when 

all elements of input array are identical? Consider typical 

implementations of sorting algorithms.  

(A) Insertion Sort  

(B) Heap Sort  

(C) Merge Sort  

(D) Selection Sort  

Solution: As discussed, insertion sort will have the complexity 

of n when the input array is already sorted.  

Que – 2. Consider the Quicksort algorithm. Suppose there is a 

procedure for finding a pivot element which splits the list into 



668 
 

two sub-lists each of which contains at least one-fifth of the 

elements. Let T(n) be the number of comparisons required to 

sort n elements. Then, (GATE-CS-2012) 

(A) T(n) <= 2T(n/5) + n 

(B) T(n) <= T(n/5) + T(4n/5) + n 

(C) T(n) <= 2T(4n/5) + n 

(D) T(n) <= 2T(n/2) + n 

Solution: The complexity of quick sort can be written as:  

  

T(n) = T(k) + T(n-k-1) + cn 

As given in question, one list contains 1/5th of total elements. 

Therefore, another list will have 4/5 of total elements. Putting 

values, we get:  

T(n) = T(n/5) + T(4n/5) + cn, which matches option (B).  

Time and Space Complexity Comparison Table : 

Sorting 

Algorithm 
Time Complexity 

Space 

Complexity 

  
Best 

Case 

Average 

Case 

Worst 

Case 
Worst Case 

Bubble Sort Ω(N) Θ(N2) O(N2) O(1) 



669 
 

Selection 

Sort 
Ω(N2) Θ(N2) O(N2) O(1) 

Insertion 

Sort 
Ω(N) Θ(N2) O(N2) O(1) 

Merge Sort 
Ω(N 

log N) 

Θ(N log 

N) 

O(N 

log N) 
O(N) 

Heap Sort 
Ω(N 

log N) 

Θ(N log 

N) 

O(N 

log N) 
O(1) 

Quick Sort 
Ω(N 

log N) 

Θ(N log 

N) 
O(N2) O(log N) 

Radix Sort Ω(N k) Θ(N k) O(N k) O(N + k) 

Count Sort 
Ω(N + 

k) 
Θ(N + k) 

O(N + 

k) 
O(k) 



670 
 

Bucket Sort 
Ω(N + 

k) 
Θ(N + k) O(N2) O(N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


