
645 
 

 Used in External Sorting 

Drawbacks of Merge Sort: 

 Slower compared to the other sort algorithms for 

smaller tasks. 

 The merge sort algorithm requires an additional 

memory space of 0(n) for the temporary array. 

 It goes through the whole process even if the array is 

sorted. 

 Recent Articles on Merge Sort 

 Coding practice for sorting. 

 Quiz on Merge Sort 

Solution of the drawback for additional storage: 

Use linked list.  

Heap Sort: 

 

 

Heap sort is a comparison-based sorting technique based on 

Binary Heap data structure. It is similar to the selection sort 

where we first find the minimum element and place the 

minimum element at the beginning. Repeat the same process 

for the remaining elements. 

 Heap sort is an in-place algorithm.  

 Its typical implementation is not stable, but can be made 

stable (See this) 

 Typically 2-3 times slower than well-implemented 

QuickSort.  The reason for slowness is a lack of locality 

of reference. 



646 
 

Advantages of heapsort: 

 Efficiency –  The time required to perform Heap sort 

increases logarithmically while other algorithms may 

grow exponentially slower as the number of items to 

sort increases. This sorting algorithm is very efficient. 

 Memory Usage – Memory usage is minimal because 

apart from what is necessary to hold the initial list of 

items to be sorted, it needs no additional memory space 

to work 

 Simplicity –  It is simpler to understand than other 

equally efficient sorting algorithms because it does not 

use advanced computer science concepts such as 

recursion 

Applications of HeapSort: 

 Heapsort is mainly used in hybrid algorithms like the 

IntroSort. 

 Sort a nearly sorted (or K sorted) array  

 k largest(or smallest) elements in an array  

The heap sort algorithm has limited uses because Quicksort and 

Mergesort are better in practice. Nevertheless, the Heap data 

structure itself is enormously used. See Applications of Heap 

Data Structure 

What is meant by Heapify?  

Heapify is the process of creating a heap data structure from a 

binary tree represented using an array. It is used to create Min-

Heap or Max-heap. Start from the first index of the non-leaf 

node whose index is given by n/2 – 1. Heapify uses recursion 



647 
 

Algorithm for Heapify: 

heapify(array) 

 Root = array[0] 

   Largest = largest( array[0] , array [2 * 0 + 1]/ array[2 * 0 

+ 2]) 

if(Root != Largest) 

 Swap(Root, Largest) 

How does Heapify work?  

  

Array = {1, 3, 5, 4, 6, 13, 10, 9, 8, 15, 17} 

Corresponding Complete Binary Tree is: 

                 1 

              /     \ 

           3         5 

        /    \     /  \ 

      4      6   13  10 

     / \    / \ 



648 
 

   9   8  15 17 

The task to build a Max-Heap from above array. 

Total Nodes = 11. 

Last Non-leaf node index = (11/2) – 1 = 4. 

Therefore, last non-leaf node = 6. 

To build the heap, heapify only the nodes: [1, 3, 5, 4, 6] in 

reverse order. 

Heapify 6: Swap 6 and 17. 

                 1 

              /     \ 

           3         5 

        /    \      /  \ 

     4      17   13  10 

    / \    /  \ 

  9   8  15   6 

Heapify 4: Swap 4 and 9. 



649 
 

                 1 

              /     \ 

           3         5 

        /    \      /  \ 

     9      17   13  10 

    / \    /  \ 

  4   8  15   6 

Heapify 5: Swap 13 and 5. 

                 1 

              /     \ 

           3         13 

        /    \      /  \ 

     9      17   5   10 

    / \    /  \ 

 4   8  15   6 



650 
 

Heapify 3: First Swap 3 and 17, again swap 3 and 15. 

                 1 

             /     \ 

        17         13 

       /    \      /  \ 

    9      15   5   10 

   / \    /  \ 

 4   8  3   6 

Heapify 1: First Swap 1 and 17, again swap 1 and 15, finally 

swap 1 and 6. 

                 17 

              /      \ 

          15         13 

         /    \      /  \ 

       9      6    5   10 

      / \    /  \ 



651 
 

    4   8  3    1 

Heap Sort Algorithm 

To solve the problem follow the below idea: 

 First convert the array into heap data structure using heapify, 

than one by one delete the root node of the Max-heap and 

replace it with the last node in the heap and then heapify the 

root of the heap. Repeat this process until size of heap is greater 

than 1. 

Follow the given steps to solve the problem: 

 Build a max heap from the input data.  

 At this point, the maximum element is stored at the root 

of the heap. Replace it with the last item of the heap 

followed by reducing the size of the heap by 1. Finally, 

heapify the root of the tree.  

 Repeat step 2 while the size of the heap is greater than 

1. 

Note: The heapify procedure can only be applied to a node if 

its children nodes are heapified. So the heapification must be 

performed in the bottom-up order. 

Detailed Working of Heap Sort 

To understand heap sort more clearly, let’s take an unsorted 

array and try to sort it using heap sort. 

Consider the array: arr[] = {4, 10, 3, 5, 1}. 

Build Complete Binary Tree: Build a complete binary tree 

from the array. 



652 
 

 

Build complete binary tree from the array 

Transform into max heap: After that, the task is to construct a 

tree from that unsorted array and try to convert it into max 

heap. 

 To transform a heap into a max-heap, the parent node 

should always be greater than or equal to the child 

nodes 

o Here, in this example, as the parent node 4 is 

smaller than the child node 10, thus, swap them 

to build a max-heap. 

Transform it into a max heap image widget 



653 
 

 Now, as seen, 4 as a parent is smaller than the child 5, 

thus swap both of these again and the resulted heap and 

array should be like this: 

 

Make the tree a max heap 

Perform heap sort: Remove the maximum element in each step 

(i.e., move it to the end position and remove that) and then 

consider the remaining elements and transform it into a max 

heap. 

 Delete the root element (10) from the max heap. In 

order to delete this node, try to swap it with the last 

node, i.e. (1). After removing the root element, again 

heapify it to convert it into max heap. 

o Resulted heap and array should look like this: 



654 
 

 

Remove 10 and perform heapify 

 Repeat the above steps and it will look like the 

following: 



655 
 

 

Remove 5 and perform heapify 

 Now remove the root (i.e. 3) again and perform heapify. 



656 
 

 

Remove 4 and perform heapify 

 Now when the root is removed once again it is sorted. 

and the sorted array will be like arr[] = {1, 3, 4, 5, 10}. 

 

The sorted array 

Implementation of Heap Sort 



657 
 

Below is the implementation of the above approach: 

 C 

 C++ 

 Java 

 Python3 

 C# 

 PHP 

 Javascript 



658 
 

// Heap Sort in C 

  

#include <stdio.h> 

  

// Function to swap the position of two elements 

  

void swap(int* a, int* b) 

{ 

  

    int temp = *a; 

  

    *a = *b; 

  

    *b = temp; 

} 

  

// To heapify a subtree rooted with node i 

// which is an index in arr[]. 

// n is size of heap 

void heapify(int arr[], int N, int i) 



659 
 

{ 

    // Find largest among root, left child and right child 

  

    // Initialize largest as root 

    int largest = i; 

  

    // left = 2*i + 1 

    int left = 2 * i + 1; 

  

    // right = 2*i + 2 

    int right = 2 * i + 2; 

  

    // If left child is larger than root 

    if (left < N && arr[left] > arr[largest]) 

  

        largest = left; 

  

    // If right child is larger than largest 

    // so far 

    if (right < N && arr[right] > arr[largest]) 



660 
 

  

        largest = right; 

  

    // Swap and continue heapifying if root is not largest 

    // If largest is not root 

    if (largest != i) { 

  

        swap(&arr[i], &arr[largest]); 

  

        // Recursively heapify the affected 

        // sub-tree 

        heapify(arr, N, largest); 

    } 

} 

  

// Main function to do heap sort 

void heapSort(int arr[], int N) 

{ 

  

    // Build max heap 



661 
 

    for (int i = N / 2 - 1; i >= 0; i--) 

  

        heapify(arr, N, i); 

  

    // Heap sort 

    for (int i = N - 1; i >= 0; i--) { 

  

        swap(&arr[0], &arr[i]); 

  

        // Heapify root element to get highest element at 

        // root again 

        heapify(arr, i, 0); 

    } 

} 

  

// A utility function to print array of size n 

void printArray(int arr[], int N) 

{ 

    for (int i = 0; i < N; i++) 

        printf("%d ", arr[i]); 



662 
 

    printf("\n"); 

} 

  

// Driver's code 

int main() 

{ 

    int arr[] = { 12, 11, 13, 5, 6, 7 }; 

    int N = sizeof(arr) / sizeof(arr[0]); 

  

    // Function call 

    heapSort(arr, N); 

    printf("Sorted array is\n"); 

    printArray(arr, N); 

} 

  

// This code is contributed by _i_plus_plus_. 



663 
 

Output 

Sorted array is  

5 6 7 11 12 13 

Time Complexity: O(N log N) 

Auxiliary Space: O(1) 

Some FAQs related to Heap Sort 

What are the two phases of Heap Sort? 

The heap sort algorithm consists of two phases. In the first 

phase the array is converted into a max heap. And in the second 

phase the highest element is removed (i.e., the one at the tree 

root) and the remaining elements are used to create a new max 

heap. 

Why Heap Sort is not stable? 

Heap sort algorithm is not a stable algorithm. This algorithm is 

not stable because the operations that are performed in a heap 

can change the relative ordering of the equivalent keys. 

Is Heap Sort an example of “Divide and Conquer” 

algorithm? 

Heap sort is NOT at all a Divide and Conquer algorithm. It uses 

a heap data structure to efficiently sort its element and not a 

“divide and conquer approach” to sort the elements. 

Which sorting algorithm is better – Heap sort or Merge 

Sort? 

The answer lies in the comparison of their time complexity and 

space requirement. The Merge sort is slightly faster than the 

Heap sort. But on the other hand merge sort takes extra 

memory. Depending on the requirement, one should choose 

which one to use. 

Why Heap sort better than Selection sort? 

Heap sort is similar to selection sort, but with a better way to 

get the maximum element. It takes advantage of the heap data 

structure to get the maximum element in constant time. 


