
612

 Create an empty sorted (or result) list

 Traverse the given list, do following for every node.

o Insert current node in sorted way in sorted or

result list.

 Change head of given linked list to head of sorted (or

result) list.

Quick Sort:

QuickSort is a Divide and Conquer algorithm. It picks an

element as a pivot and partitions the given array around the

picked pivot. There are many different versions of quickSort

that pick pivot in different ways.

 Always pick the first element as a pivot.

 Always pick the last element as a pivot (implemented

below)

 Pick a random element as a pivot.

 Pick median as the pivot.

The key process in quickSort is a partition(). The target of

partitions is, given an array and an element x of an array as the

pivot, put x at its correct position in a sorted array and put all

smaller elements (smaller than x) before x, and put all greater

elements (greater than x) after x. All this should be done in

linear time.

613

Partition Algorithm:

There can be many ways to do partition, following pseudo-code

adopts the method given in the CLRS book. The logic is simple,

we start from the leftmost element and keep track of the index

of smaller (or equal to) elements as i. While traversing, if we

find a smaller element, we swap the current element with arr[i].

Otherwise, we ignore the current element.

Pseudo Code for recursive QuickSort function:

/* low –> Starting index, high –> Ending index */

quickSort(arr[], low, high) {

 if (low < high) {

 /* pi is partitioning index, arr[pi] is now at right place */

 pi = partition(arr, low, high);

 quickSort(arr, low, pi – 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

614

 }

}

Pseudo code for partition()

/* This function takes last element as pivot, places the pivot

element at its correct position in sorted array, and places all

smaller (smaller than pivot) to left of pivot and all greater

elements to right of pivot */

partition (arr[], low, high)

{

 // pivot (Element to be placed at right position)

 pivot = arr[high];

 i = (low – 1) // Index of smaller element and indicates the

 // right position of pivot found so far

 for (j = low; j <= high- 1; j++){

 // If current element is smaller than the pivot

 if (arr[j] < pivot){

 i++; // increment index of smaller element

615

 swap arr[i] and arr[j]

 }

 }

 swap arr[i + 1] and arr[high])

 return (i + 1)

}

Illustration of partition() :

Consider: arr[] = {10, 80, 30, 90, 40, 50, 70}

 Indexes: 0 1 2 3 4 5 6

 low = 0, high = 6, pivot = arr[h] = 70

 Initialize index of smaller element, i = -1

616

 Traverse elements from j = low to high-1

o j = 0: Since arr[j] <= pivot, do i++ and

swap(arr[i], arr[j])

o i = 0
 arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i

and j are same

 j = 1: Since arr[j] > pivot, do nothing

 j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i],

arr[j])

 i = 1
 arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and

30

617

 j = 3 : Since arr[j] > pivot, do nothing // No change in

i and arr[]

 j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i],

arr[j])

 i = 2
 arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40

Swapped

618

 j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i]

with arr[j]

 i = 3
 arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50

Swapped

619

 We come out of loop because j is now equal to high-1.

 Finally we place pivot at correct position by swapping

arr[i+1] and arr[high] (or pivot)

 arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70

Swapped

 Now 70 is at its correct place. All elements smaller than

70 are before it and all elements greater than 70 are

after it.

 Since quick sort is a recursive function, we call the

partition function again at left and right partitions

620

 Again call function at right part and swap 80 and 90

621

Implementation:

Following are the implementations of QuickSort:

 C++14

 Java

 Python3

 C#

 Javascript

622

/* C++ implementation of QuickSort */

#include <bits/stdc++.h>

using namespace std;

// A utility function to swap two elements

void swap(int* a, int* b)

{

 int t = *a;

 *a = *b;

 *b = t;

}

/* This function takes last element as pivot, places

the pivot element at its correct position in sorted

array, and places all smaller (smaller than pivot)

to left of pivot and all greater elements to right

of pivot */

int partition(int arr[], int low, int high)

{

 int pivot = arr[high]; // pivot

623

 int i

 = (low

 - 1); // Index of smaller element and indicates

 // the right position of pivot found so far

 for (int j = low; j <= high - 1; j++) {

 // If current element is smaller than the pivot

 if (arr[j] < pivot) {

 i++; // increment index of smaller element

 swap(&arr[i], &arr[j]);

 }

 }

 swap(&arr[i + 1], &arr[high]);

 return (i + 1);

}

/* The main function that implements QuickSort

arr[] --> Array to be sorted,

low --> Starting index,

high --> Ending index */

624

void quickSort(int arr[], int low, int high)

{

 if (low < high) {

 /* pi is partitioning index, arr[p] is now

 at right place */

 int pi = partition(arr, low, high);

 // Separately sort elements before

 // partition and after partition

 quickSort(arr, low, pi - 1);

 quickSort(arr, pi + 1, high);

 }

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 cout << arr[i] << " ";

625

 cout << endl;

}

// Driver Code

int main()

{

 int arr[] = { 10, 7, 8, 9, 1, 5 };

 int n = sizeof(arr) / sizeof(arr[0]);

 quickSort(arr, 0, n - 1);

 cout << "Sorted array: \n";

 printArray(arr, n);

 return 0;

}

// This code is contributed by rathbhupendra

626

Output

Sorted array:

1 5 7 8 9 10

Hoare’s vs Lomuto Partition

Please note that the above implementation is Lomuto Partition.

A more optimized implementation of QuickSort is Hoare’s

partition which is more efficient than Lomuto’s partition

scheme because it does three times less swaps on average.

How to pick any element as pivot?

With one minor change to the above code, we can pick any

element as pivot. For example, to make the first element as

pivot, we can simply swap the first and last elements and then

use the same code. Same thing can be done to pick any random

element as a pivot

Analysis of QuickSort

Time taken by QuickSort, in general, can be written as follows.

 T(n) = T(k) + T(n-k-1) + (n)

The first two terms are for two recursive calls, the last term is

for the partition process. k is the number of elements that are

smaller than the pivot.

The time taken by QuickSort depends upon the input array and

partition strategy. Following are three cases.

Worst Case:

The worst case occurs when the partition process always picks

the greatest or smallest element as the pivot. If we consider the

above partition strategy where the last element is always picked

as a pivot, the worst case would occur when the array is already

sorted in increasing or decreasing order. Following is

recurrence for the worst case.

627

 T(n) = T(0) + T(n-1) + (n)which is equivalent to T(n) = T(n-

1) + (n)

The solution to the above recurrence is (n2).

Best Case:
The best case occurs when the partition process always picks

the middle element as the pivot. The following is recurrence for

the best case.

 T(n) = 2T(n/2) + (n)

The solution for the above recurrence is (nLogn). It can be

solved using case 2 of Master Theorem.
Average Case:

To do average case analysis, we need to consider all possible

permutation of array and calculate time taken by every

permutation which doesn’t look easy.

We can get an idea of average case by considering the case

when partition puts O(n/9) elements in one set and O(9n/10)

elements in other set. Following is recurrence for this case.

 T(n) = T(n/9) + T(9n/10) + (n)

The solution of above recurrence is also O(nLogn):
Although the worst case time complexity of QuickSort is O(n2)

which is more than many other sorting algorithms like Merge

Sort and Heap Sort, QuickSort is faster in practice, because its

inner loop can be efficiently implemented on most

architectures, and in most real-world data. QuickSort can be

implemented in different ways by changing the choice of pivot,

so that the worst case rarely occurs for a given type of data.

However, merge sort is generally considered better when data

is huge and stored in external storage.

628

Is QuickSort stable?

The default implementation is not stable. However any sorting

algorithm can be made stable by considering indexes as

comparison parameter.

Is QuickSort In-place?

As per the broad definition of in-place algorithm it qualifies as

an in-place sorting algorithm as it uses extra space only for

storing recursive function calls but not for manipulating the

input.

What is 3-Way QuickSort?

In simple QuickSort algorithm, we select an element as pivot,

partition the array around pivot and recur for subarrays on left

and right of pivot.

Consider an array which has many redundant elements. For

example, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4

is picked as pivot in Simple QuickSort, we fix only one 4 and

recursively process remaining occurrences. In 3 Way

QuickSort, an array arr[l..r] is divided in 3 parts:

 arr[l..i] elements less than pivot.

 arr[i+1..j-1] elements equal to pivot.

 arr[j..r] elements greater than pivot.

See this for implementation.

How to implement QuickSort for Linked Lists?

QuickSort on Singly Linked List

QuickSort on Doubly Linked List

Can we implement QuickSort Iteratively?

Yes, please refer Iterative Quick Sort.

Why Quick Sort is preferred over MergeSort for sorting Arrays

?

Quick Sort in its general form is an in-place sort (i.e. it doesn’t

require any extra storage) whereas merge sort requires O(N)

629

extra storage, N denoting the array size which may be quite

expensive. Allocating and de-allocating the extra space used

for merge sort increases the running time of the algorithm.

Comparing average complexity we find that both type of sorts

have O(NlogN) average complexity but the constants differ.

For arrays, merge sort loses due to the use of extra O(N) storage

space.

Most practical implementations of Quick Sort use randomized

version. The randomized version has expected time complexity

of O(nLogn). The worst case is possible in randomized version

also, but worst case doesn’t occur for a particular pattern (like

sorted array) and randomized Quick Sort works well in

practice.

Quick Sort is also a cache friendly sorting algorithm as it has

good locality of reference when used for arrays.

Quick Sort is also tail recursive, therefore tail call optimizations

is done.

Why MergeSort is preferred over QuickSort for Linked

Lists ?

In case of linked lists the case is different mainly due to

difference in memory allocation of arrays and linked lists.

Unlike arrays, linked list nodes may not be adjacent in memory.

Unlike array, in linked list, we can insert items in the middle in

O(1) extra space and O(1) time. Therefore merge operation of

merge sort can be implemented without extra space for linked

lists.

In arrays, we can do random access as elements are continuous

in memory. Let us say we have an integer (4-byte) array A and

let the address of A[0] be x then to access A[i], we can directly

access the memory at (x + i*4). Unlike arrays, we can not do

random access in linked list. Quick Sort requires a lot of this

kind of access. In linked list to access i’th index, we have to

travel each and every node from the head to i’th node as we

630

don’t have continuous block of memory. Therefore, the

overhead increases for quick sort. Merge sort accesses data

sequentially and the need of random access is low.

Merge Sort:

The Merge Sort algorithm is a sorting algorithm that is based

on the Divide and Conquer paradigm. In this algorithm, the

array is initially divided into two equal halves and then they

are combined in a sorted manner.

Merge Sort Working Process:

Think of it as a recursive algorithm continuously splits the

array in half until it cannot be further divided. This means that

if the array becomes empty or has only one element left, the

dividing will stop, i.e. it is the base case to stop the recursion.

If the array has multiple elements, split the array into halves

and recursively invoke the merge sort on each of the halves.

Finally, when both halves are sorted, the merge operation is

applied. Merge operation is the process of taking two smaller

sorted arrays and combining them to eventually make a larger

one.

Illustration:

To know the functioning of merge sort, lets consider an array

arr[] = {38, 27, 43, 3, 9, 82, 10}

 At first, check if the left index of array is less than the

right index, if yes then calculate its mid point

631

 Now, as we already know that merge sort first divides

the whole array iteratively into equal halves, unless

the atomic values are achieved.

 Here, we see that an array of 7 items is divided into

two arrays of size 4 and 3 respectively.

 Now, again find that is left index is less than the right

index for both arrays, if found yes, then again

calculate mid points for both the arrays.

632

 Now, further divide these two arrays into further

halves, until the atomic units of the array is reached

and further division is not possible.

 After dividing the array into smallest units, start

merging the elements again based on comparison of

size of elements

 Firstly, compare the element for each list and then

combine them into another list in a sorted manner.

 After the final merging, the list looks like this:

633

The following diagram shows the complete merge sort

process for an example array {38, 27, 43, 3, 9, 82, 10}.

If we take a closer look at the diagram, we can see that the

array is recursively divided into two halves till the size

becomes 1. Once the size becomes 1, the merge processes

come into action and start merging arrays back till the

complete array is merged.

634

Recursive steps of merge sort

Algorithm:

step 1: start

step 2: declare array and left, right, mid variable

step 3: perform merge function.

 if left > right

635

 return

 mid= (left+right)/2

 mergesort(array, left, mid)

 mergesort(array, mid+1, right)

 merge(array, left, mid, right)

step 4: Stop

Follow the steps below the solve the problem:

MergeSort(arr[], l, r)

If r > l

 Find the middle point to divide the array into two

halves:

o middle m = l + (r – l)/2

 Call mergeSort for first half:

o Call mergeSort(arr, l, m)

 Call mergeSort for second half:

o Call mergeSort(arr, m + 1, r)

 Merge the two halves sorted in steps 2 and 3:

o Call merge(arr, l, m, r)

Below is the implementation of the above approach:

 C++

 C

 Java

636

 Python3

 C#

 Javascript

 PHP

637

// C++ program for Merge Sort

#include <iostream>

using namespace std;

// Merges two subarrays of array[].

// First subarray is arr[begin..mid]

// Second subarray is arr[mid+1..end]

void merge(int array[], int const left, int const mid,

 int const right)

{

 auto const subArrayOne = mid - left + 1;

 auto const subArrayTwo = right - mid;

 // Create temp arrays

 auto *leftArray = new int[subArrayOne],

 *rightArray = new int[subArrayTwo];

 // Copy data to temp arrays leftArray[] and rightArray[]

 for (auto i = 0; i < subArrayOne; i++)

 leftArray[i] = array[left + i];

638

 for (auto j = 0; j < subArrayTwo; j++)

 rightArray[j] = array[mid + 1 + j];

 auto indexOfSubArrayOne

 = 0, // Initial index of first sub-array

 indexOfSubArrayTwo

 = 0; // Initial index of second sub-array

 int indexOfMergedArray

 = left; // Initial index of merged array

 // Merge the temp arrays back into array[left..right]

 while (indexOfSubArrayOne < subArrayOne

 && indexOfSubArrayTwo < subArrayTwo) {

 if (leftArray[indexOfSubArrayOne]

 <= rightArray[indexOfSubArrayTwo]) {

 array[indexOfMergedArray]

 = leftArray[indexOfSubArrayOne];

 indexOfSubArrayOne++;

 }

 else {

639

 array[indexOfMergedArray]

 = rightArray[indexOfSubArrayTwo];

 indexOfSubArrayTwo++;

 }

 indexOfMergedArray++;

 }

 // Copy the remaining elements of

 // left[], if there are any

 while (indexOfSubArrayOne < subArrayOne) {

 array[indexOfMergedArray]

 = leftArray[indexOfSubArrayOne];

 indexOfSubArrayOne++;

 indexOfMergedArray++;

 }

 // Copy the remaining elements of

 // right[], if there are any

 while (indexOfSubArrayTwo < subArrayTwo) {

 array[indexOfMergedArray]

 = rightArray[indexOfSubArrayTwo];

 indexOfSubArrayTwo++;

640

 indexOfMergedArray++;

 }

 delete[] leftArray;

 delete[] rightArray;

}

// begin is for left index and end is

// right index of the sub-array

// of arr to be sorted */

void mergeSort(int array[], int const begin, int const end)

{

 if (begin >= end)

 return; // Returns recursively

 auto mid = begin + (end - begin) / 2;

 mergeSort(array, begin, mid);

 mergeSort(array, mid + 1, end);

 merge(array, begin, mid, end);

}

641

// UTILITY FUNCTIONS

// Function to print an array

void printArray(int A[], int size)

{

 for (auto i = 0; i < size; i++)

 cout << A[i] << " ";

}

// Driver code

int main()

{

 int arr[] = { 12, 11, 13, 5, 6, 7 };

 auto arr_size = sizeof(arr) / sizeof(arr[0]);

 cout << "Given array is \n";

 printArray(arr, arr_size);

 mergeSort(arr, 0, arr_size - 1);

 cout << "\nSorted array is \n";

642

 printArray(arr, arr_size);

 return 0;

}

// This code is contributed by Mayank Tyagi

// This code was revised by Joshua Estes

643

Output

Given array is

12 11 13 5 6 7

Sorted array is

5 6 7 11 12 13

Time Complexity: O(N log(N)), Sorting arrays on different

machines. Merge Sort is a recursive algorithm and time

complexity can be expressed as following recurrence relation.

T(n) = 2T(n/2) + θ(n)

The above recurrence can be solved either using the

Recurrence Tree method or the Master method. It falls in case

II of the Master Method and the solution of the recurrence is

θ(Nlog(N)). The time complexity of Merge Sort isθ(Nlog(N))

in all 3 cases (worst, average, and best) as merge sort always

divides the array into two halves and takes linear time to

merge two halves.

Auxiliary Space: O(n), In merge sort all elements are copied

into an auxiliary array. So N auxiliary space is required for

merge sort.

Is Merge sort In Place?

No, In merge sort the merging step requires extra space to

store the elements.

Is Merge sort Stable?

Yes, merge sort is stable.

How can we make Merge sort more efficient?

Merge sort can be made more efficient by replacing recursive

calls with Insertion sort for smaller array sizes, where the size

of the remaining array is less or equal to 43 as the number of

operations required to sort an array of max size 43 will be less

644

in Insertion sort as compared to the number of operations

required in Merge sort.

Analysis of Merge Sort:

A merge sort consists of several passes over the input. The

first pass merges segments of size 1, the second merges

segments of size 2, and the pass merges segments of size 2i-

1. Thus, the total number of passes is [log2n]. As merge

showed, we can merge two sorted segments in linear time,

which means that each pass takes O(n) time. Since there are

[log2n] passes, the total computing time is O(nlogn).

Applications of Merge Sort:

 Merge Sort is useful for sorting linked lists in O(N log

N) time. In the case of linked lists, the case is different

mainly due to the difference in memory allocation of

arrays and linked lists. Unlike arrays, linked list nodes

may not be adjacent in memory. Unlike an array, in

the linked list, we can insert items in the middle in

O(1) extra space and O(1) time. Therefore, the merge

operation of merge sort can be implemented without

extra space for linked lists.

In arrays, we can do random access as elements are

contiguous in memory. Let us say we have an integer

(4-byte) array A and let the address of A[0] be x then

to access A[i], we can directly access the memory at (x

+ i*4). Unlike arrays, we can not do random access in

the linked list. Quick Sort requires a lot of this kind of

access. In a linked list to access i’th index, we have to

travel each and every node from the head to i’th node

as we don’t have a contiguous block of memory.

Therefore, the overhead increases for quicksort. Merge

sort accesses data sequentially and the need of random

access is low.

 Inversion Count Problem

