
577

Count Sort
Ω(N +

k)
Θ(N + k)

O(N +

k)
O(k)

Bucket

Sort

Ω(N +

k)
Θ(N + k) O(N2) O(N)

Selection Sort:

The selection sort algorithm sorts an array by repeatedly

finding the minimum element (considering ascending order)

from the unsorted part and putting it at the beginning.

The algorithm maintains two subarrays in a given array.

 The subarray which already sorted.

 The remaining subarray was unsorted.

In every iteration of the selection sort, the minimum element

(considering ascending order) from the unsorted subarray is

picked and moved to the sorted subarray.

Flowchart of the Selection Sort:

How selection sort works?

578

Lets consider the following array as an example: arr[] = {64,

25, 12, 22, 11}

First pass:

 For the first position in the sorted array, the whole

array is traversed from index 0 to 4 sequentially. The

first position where 64 is stored presently, after

traversing whole array it is clear that 11 is the lowest

value.

 64 25 12 22 11

 Thus, replace 64 with 11. After one iteration 11, which

happens to be the least value in the array, tends to

appear in the first position of the sorted list.

 11 25 12 22 64

Second Pass:

 For the second position, where 25 is present, again

traverse the rest of the array in a sequential manner.

579

 11 25 12 22 64

 After traversing, we found that 12 is the second lowest

value in the array and it should appear at the second

place in the array, thus swap these values.

 11 12 25 22 64

Third Pass:

 Now, for third place, where 25 is present again

traverse the rest of the array and find the third least

value present in the array.

 11 12 25 22 64

 While traversing, 22 came out to be the third least

value and it should appear at the third place in the

array, thus swap 22 with element present at third

position.

580

 11 12 22 25 64

Fourth pass:

 Similarly, for fourth position traverse the rest of the

array and find the fourth least element in the array

 As 25 is the 4th lowest value hence, it will place at the

fourth position.

 11 12 22 25 64

Fifth Pass:

 At last the largest value present in the array

automatically get placed at the last position in the

array

 The resulted array is the sorted array.

 11 12 22 25 64

581

Follow the below steps to solve the problem:

 Initialize minimum value(min_idx) to location 0.

 Traverse the array to find the minimum element in the

array.

 While traversing if any element smaller than min_idx

is found then swap both the values.

 Then, increment min_idx to point to the next element.

 Repeat until the array is sorted.

Below is the implementation of the above approach:

 C++

 C

 Python3

 Java

 C#

 PHP

 Javascript

582

// C++ program for implementation of

// selection sort

#include <bits/stdc++.h>

using namespace std;

//Swap function

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

void selectionSort(int arr[], int n)

{

 int i, j, min_idx;

 // One by one move boundary of

 // unsorted subarray

 for (i = 0; i < n-1; i++)

583

 {

 // Find the minimum element in

 // unsorted array

 min_idx = i;

 for (j = i+1; j < n; j++)

 if (arr[j] < arr[min_idx])

 min_idx = j;

 // Swap the found minimum element

 // with the first element

 if(min_idx!=i)

 swap(&arr[min_idx], &arr[i]);

 }

}

//Function to print an array

void printArray(int arr[], int size)

{

 int i;

584

 for (i=0; i < size; i++)

 cout << arr[i] << " ";

 cout << endl;

}

// Driver program to test above functions

int main()

{

 int arr[] = {64, 25, 12, 22, 11};

 int n = sizeof(arr)/sizeof(arr[0]);

 selectionSort(arr, n);

 cout << "Sorted array: \n";

 printArray(arr, n);

 return 0;

}

// This is code is contributed by rathbhupendra

585

Output

Sorted array:

11 12 22 25 64

Complexity Analysis of Selection Sort:

Time Complexity: The time complexity of Selection Sort is

O(N2) as there are two nested loops:

 One loop to select an element of Array one by one =

O(N)

 Another loop to compare that element with every other

Array element = O(N)

Therefore overall complexity = O(N) * O(N) = O(N*N) =

O(N2)

Auxiliary Space: O(1) as the only extra memory used is for

temporary variables while swapping two values in Array. The

selection sort never makes more than O(N) swaps and can be

useful when memory write is a costly operation.

Bubble Sort:

Bubble Sort is the simplest sorting algorithm that works by

repeatedly swapping the adjacent elements if they are in the

wrong order. This algorithm is not suitable for large data sets

as its average and worst-case time complexity is quite high.

How does Bubble Sort Work?

Input: arr[] = {5, 1, 4, 2, 8}

First Pass:

586

 Bubble sort starts with very first two elements,

comparing them to check which one is greater.

o (5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm

compares the first two elements, and swaps

since 5 > 1.

o (1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

o (1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

o (1 4 2 5 8) –> (1 4 2 5 8), Now, since these

elements are already in order (8 > 5), algorithm

does not swap them.

Second Pass:

 Now, during second iteration it should look like this:

o (1 4 2 5 8) –> (1 4 2 5 8)

o (1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

o (1 2 4 5 8) –> (1 2 4 5 8)

o (1 2 4 5 8) –> (1 2 4 5 8)

Third Pass:

 Now, the array is already sorted, but our algorithm

does not know if it is completed.

 The algorithm needs one whole pass without any swap

to know it is sorted.

o (1 2 4 5 8) –> (1 2 4 5 8)

o (1 2 4 5 8) –> (1 2 4 5 8)

o (1 2 4 5 8) –> (1 2 4 5 8)

o (1 2 4 5 8) –> (1 2 4 5 8)

587

Illustration:

Follow the below steps to solve the problem:

 Run a nested for loop to traverse the input array using

two variables i and j, such that 0 ≤ i < n-1 and 0 ≤ j < n-

i-1

 If arr[j] is greater than arr[j+1] then swap these

adjacent elements, else move on

 Print the sorted array

Below is the implementation of the above approach:

 C

588

 C++

 Java

 Python3

 C#

 PHP

 Javascript

589

// C program for implementation of Bubble sort

#include <stdio.h>

void swap(int* xp, int* yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

// A function to implement bubble sort

void bubbleSort(int arr[], int n)

{

 int i, j;

 for (i = 0; i < n - 1; i++)

 // Last i elements are already in place

 for (j = 0; j < n - i - 1; j++)

 if (arr[j] > arr[j + 1])

 swap(&arr[j], &arr[j + 1]);

590

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main()

{

 int arr[] = { 64, 34, 25, 12, 22, 11, 90 };

 int n = sizeof(arr) / sizeof(arr[0]);

 bubbleSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

591

}

Output

Sorted array:

592

1 2 4 5 8

Time Complexity: O(N2)

Auxiliary Space: O(1)

Optimized Implementation of Bubble Sort:

The above function always runs O(N2) time even if the array

is sorted. It can be optimized by stopping the algorithm if the

inner loop didn’t cause any swap.

Below is the implementation for the above approach:

 C

 C++

 Java

 Python3

 C#

 PHP

 Javascript

593

// Optimized implementation of Bubble sort

#include <stdio.h>

#include <stdbool.h>

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

// An optimized version of Bubble Sort

void bubbleSort(int arr[], int n)

{

 int i, j;

 bool swapped;

 for (i = 0; i < n-1; i++)

 {

 swapped = false;

 for (j = 0; j < n-i-1; j++)

594

 {

 if (arr[j] > arr[j+1])

 {

 swap(&arr[j], &arr[j+1]);

 swapped = true;

 }

 }

 // IF no two elements were swapped by inner loop, then

break

 if (swapped == false)

 break;

 }

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", arr[i]);

595

 printf("n");

}

// Driver program to test above functions

int main()

{

 int arr[] = {64, 34, 25, 12, 22, 11, 90};

 int n = sizeof(arr)/sizeof(arr[0]);

 bubbleSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

596

Output

Sorted array:

 1 2 3 4 5 7 8 9

Time Complexity: O(N2)

Auxiliary Space: O(1)

Worst Case Analysis for Bubble Sort:

The worst-case condition for bubble sort occurs when elements

of the array are arranged in decreasing order.

In the worst case, the total number of iterations or passes

required to sort a given array is (n-1). where ‘n’ is a number of

elements present in the array.

 At pass 1 : Number of comparisons = (n-1)

 Number of swaps = (n-1)

 At pass 2 : Number of comparisons = (n-2)

 Number of swaps = (n-2)

 At pass 3 : Number of comparisons = (n-3)

 Number of swaps = (n-3)

 .

 .

 .

597

 At pass n-1 : Number of comparisons = 1

 Number of swaps = 1

Now , calculating total number of comparison required to sort

the array

= (n-1) + (n-2) + (n-3) + . . . 2 + 1

= (n-1)*(n-1+1)/2 { by using sum of N natural Number

formula }

= n (n-1)/2

For the Worst case:

Total number of swaps = Total number of comparison

Total number of comparison (Worst case) = n(n-1)/2

Total number of swaps (Worst case) = n(n-1)/2

Worst and Average Case Time Complexity: O(N2). The worst

case occurs when an array is reverse sorted.

Best Case Time Complexity: O(N). The best case occurs when

an array is already sorted.

Auxiliary Space: O(1)

Recursive Implementation Of Bubble Sort:

598

The idea is to place the largest element in its position and keep

doing the same for every other element.

Follow the below steps to solve the problem:

 Place the largest element at its position, this operation

makes sure that the first largest element will be placed

at the end of the array.

 Recursively call for rest n – 1 elements with the same

operation and place the next greater element at their

position.

 The base condition for this recursion call would be,

when the number of elements in the array becomes 0 or

1 then, simply return (as they are already sorted).

Below is the implementation of the above approach:

 C++

 Java

 C#

599

//C++ code for recursive bubble sort algorithm

#include <iostream>

using namespace std;

void bubblesort(int arr[], int n)

{

 if (n == 0 || n == 1)

 {

 return;

 }

 for (int i = 0; i < n - 1; i++)

 {

 if (arr[i] > arr[i + 1])

 {

 swap(arr[i], arr[i + 1]);

 }

 }

 bubblesort(arr, n - 1);

}

int main()

{

600

 int arr[5] = {2, 5, 1, 6, 9};

 bubblesort(arr, 5);

 for (int i = 0; i < 5; i++)

 {

 cout << arr[i] << " ";

 }

 return 0;

}

//code contributed by pragatikohli

Output
1 2 5 6 9

What is the Boundary Case for Bubble sort?

Bubble sort takes minimum time (Order of n) when elements

are already sorted. Hence it is best to check if the array is

already sorted or not beforehand, to avoid O(N2) time

complexity.

Does sorting happen in place in Bubble sort?

Yes, Bubble sort performs swapping of adjacent pairs without

the use of any major data structure. Hence Bubble sort

algorithm is an in-place algorithm.

Is the Bubble sort algorithm stable?

601

Yes, the bubble sort algorithm is stable.

Where is the Bubble sort algorithm used?

Due to its simplicity, bubble sort is often used to introduce the

concept of a sorting algorithm.

In computer graphics, it is popular for its capability to detect a

tiny error (like a swap of just two elements) in almost-sorted

arrays and fix it with just linear

complexity (2n).

Example: It is used in a polygon filling algorithm, where

bounding lines are sorted by their x coordinate at a specific scan

line (a line parallel to the x-axis), and with incrementing y their

order changes (two elements are swapped) only at intersections

of two lines

Insertion Sort:

Insertion sort is a simple sorting algorithm that works similar

to the way you sort playing cards in your hands. The array is

virtually split into a sorted and an unsorted part. Values from

the unsorted part are picked and placed at the correct position

in the sorted part.

Characteristics of Insertion Sort:

 This algorithm is one of the simplest algorithm with

simple implementation

 Basically, Insertion sort is efficient for small data

values

 Insertion sort is adaptive in nature, i.e. it is appropriate

for data sets which are already partially sorted.

Working of Insertion Sort algorithm:

Consider an example: arr[]: {12, 11, 13, 5, 6}

602

 12 11 13 5 6

First Pass:

 Initially, the first two elements of the array are

compared in insertion sort.

 12 11 13 5 6

 Here, 12 is greater than 11 hence they are not in the

ascending order and 12 is not at its correct position.

Thus, swap 11 and 12.

 So, for now 11 is stored in a sorted sub-array.

 11 12 13 5 6

Second Pass:

 Now, move to the next two elements and compare them

603

 11 12 13 5 6

 Here, 13 is greater than 12, thus both elements seems

to be in ascending order, hence, no swapping will

occur. 12 also stored in a sorted sub-array along with

11

Third Pass:

 Now, two elements are present in the sorted sub-array

which are 11 and 12

 Moving forward to the next two elements which are 13

and 5

 11 12 13 5 6

 Both 5 and 13 are not present at their correct place so

swap them

604

 11 12 5 13 6

 After swapping, elements 12 and 5 are not sorted, thus

swap again

 11 5 12 13 6

 Here, again 11 and 5 are not sorted, hence swap again

 5 11 12 13 6

 here, it is at its correct position

Fourth Pass:

 Now, the elements which are present in the sorted sub-

array are 5, 11 and 12

 Moving to the next two elements 13 and 6

605

 5 11 12 13 6

 Clearly, they are not sorted, thus perform swap between

both

 5 11 12 6 13

 Now, 6 is smaller than 12, hence, swap again

 5 11 6 12 13

 Here, also swapping makes 11 and 6 unsorted hence,

swap again

 5 6 11 12 13

606

 Finally, the array is completely sorted.

Illustrations:

607

Insertion Sort Algorithm

To sort an array of size N in ascending order:

 Iterate from arr[1] to arr[N] over the array.

 Compare the current element (key) to its predecessor.

 If the key element is smaller than its predecessor,

compare it to the elements before. Move the greater

elements one position up to make space for the swapped

element.

Below is the implementation:

 C++

 C

 Java

 Python

 C#

 PHP

 Javascript

608

// C++ program for insertion sort

#include <bits/stdc++.h>

using namespace std;

// Function to sort an array using

// insertion sort

void insertionSort(int arr[], int n)

{

 int i, key, j;

 for (i = 1; i < n; i++)

 {

 key = arr[i];

 j = i - 1;

 // Move elements of arr[0..i-1],

 // that are greater than key, to one

 // position ahead of their

 // current position

 while (j >= 0 && arr[j] > key)

609

 {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

// A utility function to print an array

// of size n

void printArray(int arr[], int n)

{

 int i;

 for (i = 0; i < n; i++)

 cout << arr[i] << " ";

 cout << endl;

}

// Driver code

int main()

610

{

 int arr[] = { 12, 11, 13, 5, 6 };

 int N = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, N);

 printArray(arr, N);

 return 0;

}

// This is code is contributed by rathbhupendra

611

Output
5 6 11 12 13

Time Complexity: O(N^2)

Auxiliary Space: O(1)

What are the Boundary Cases of the Insertion Sort

algorithm?

Insertion sort takes maximum time to sort if elements are sorted

in reverse order. And it takes minimum time (Order of n) when

elements are already sorted.

What are the Algorithmic Paradigm of Insertion Sort

algorithm?

Insertion Sort algorithm follows incremental approach.

Is Insertion Sort an in-place sorting algorithm?

Yes, insertion sort is an in-place sorting algorithm.

Is Insertion Sort a stable algorithm?

Yes, insertion sort is a stable sorting algorithm.

When is the Insertion Sort algorithm used?

Insertion sort is used when number of elements is small. It can

also be useful when input array is almost sorted, only few

elements are misplaced in complete big array.

What is Binary Insertion Sort?

We can use binary search to reduce the number of comparisons

in normal insertion sort. Binary Insertion Sort uses binary

search to find the proper location to insert the selected item at

each iteration. In normal insertion, sorting takes O(i) (at ith

iteration) in worst case. We can reduce it to O(logi) by using

binary search. The algorithm, as a whole, still has a running

worst case running time of O(n^2) because of the series of

swaps required for each insertion. Refer this for

implementation.

How to implement Insertion Sort for Linked List?

Below is simple insertion sort algorithm for linked list.

