
564 
 

Now, 57 is the only element which is left in the node, the 

minimum number of elements that must be present in a B tree 

of order 5, is 2. it is less than that, the elements in its left and 

right sub-tree are also not sufficient therefore, merge it with the 

left sibling and intervening element of parent i.e. 49. 

The final B tree is shown as follows. 

 

 

Application of B tree 

B tree is used to index the data and provides fast access to the 

actual data stored on the disks since, the access to value stored 

in a large database that is stored on a disk is a very time 

consuming process. 

Searching an un-indexed and unsorted database containing n 

key values needs O(n) running time in worst case. However, if 

we use B Tree to index this database, it will be searched in 

O(log n) time in worst case. 
 

B+ Tree: 

B+ Tree is an extension of B Tree which allows efficient 

insertion, deletion and search operations. 

In B Tree, Keys and records both can be stored in the internal 

as well as leaf nodes. Whereas, in B+ tree, records (data) can 

only be stored on the leaf nodes while internal nodes can only 

store the key values. 

The leaf nodes of a B+ tree are linked together in the form of a 

singly linked lists to make the search queries more efficient. 



565 
 

B+ Tree are used to store the large amount of data which can 

not be stored in the main memory. Due to the fact that, size of 

main memory is always limited, the internal nodes (keys to 

access records) of the B+ tree are stored in the main memory 

whereas, leaf nodes are stored in the secondary memory. 

The internal nodes of B+ tree are often called index nodes. A 

B+ tree of order 3 is shown in the following figure. 

 

 

Advantages of B+ Tree 

1. Records can be fetched in equal number of disk accesses. 

2. Height of the tree remains balanced and less as compare 

to B tree. 

3. We can access the data stored in a B+ tree sequentially as 

well as directly. 

4. Keys are used for indexing. 

5. Faster search queries as the data is stored only on the leaf 

nodes. 



566 
 

 

B Tree VS B+ Tree 

SN B Tree B+ Tree 

1 Search keys can not be 

repeatedly stored. 

Redundant search keys can 

be present. 



567 
 

2 Data can be stored in leaf 

nodes as well as internal 

nodes 

Data can only be stored on 

the leaf nodes. 

3 Searching for some data is 

a slower process since data 

can be found on internal 

nodes as well as on the leaf 

nodes. 

Searching is 

comparatively faster as 

data can only be found on 

the leaf nodes. 

4 Deletion of internal nodes 

are so complicated and 

time consuming. 

Deletion will never be a 

complexed process since 

element will always be 

deleted from the leaf 

nodes. 



568 
 

5 Leaf nodes can not be 

linked together. 

Leaf nodes are linked 

together to make the 

search operations more 

efficient. 

Insertion in B+ Tree 

Step 1: Insert the new node as a leaf node 

Step 2: If the leaf doesn't have required space, split the node 

and copy the middle node to the next index node. 

Step 3: If the index node doesn't have required space, split the 

node and copy the middle element to the next index page. 

Example : 

Insert the value 195 into the B+ tree of order 5 shown in the 

following figure. 

 

 

195 will be inserted in the right sub-tree of 120 after 190. Insert 

it at the desired position. 

 

 



569 
 

The node contains greater than the maximum number of 

elements i.e. 4, therefore split it and place the median node up 

to the parent. 

 

 

Now, the index node contains 6 children and 5 keys which 

violates the B+ tree properties, therefore we need to split it, 

shown as follows. 

 

 

Deletion in B+ Tree 

Step 1: Delete the key and data from the leaves. 

Step 2: if the leaf node contains less than minimum number of 

elements, merge down the node with its sibling and delete the 

key in between them. 

Step 3: if the index node contains less than minimum number 

of elements, merge the node with the sibling and move down 

the key in between them. 

Example 

Delete the key 200 from the B+ Tree shown in the following 

figure. 

 

 



570 
 

200 is present in the right sub-tree of 190, after 195. delete it. 

 

 

Merge the two nodes by using 195, 190, 154 and 129. 

 

 

Now, element 120 is the single element present in the node 

which is violating the B+ Tree properties. Therefore, we need 

to merge it by using 60, 78, 108 and 120. 

Now, the height of B+ tree will be decreased by 1. 

 

 

 

 

 

 

 

 

 


