
551

Insertion

Insertion can be done in multiple ways depending on the

location where the element is to be inserted.

 We can insert the new element at the rightmost or the

leftmost vacant position

 Or just insert the element in the first vacant position we

find when we traverse a tree

As we said there are many more ways we can insert a new

element, but for this article's sake let's try the first method:

Let's determine the vacant place with In-order traversal.

Parameters: root, new_node

1. Check the root if it's null, i.e., if it's an empty tree. If yes,

return the new_node as root.

2. If it’s not, start the inorder traversal of the tree

3. Check for the existence of the left child. If it doesn't exist,

the new_node will be made the left child, or else we'll

proceed with the inorder traversal to find the vacant spot

4. Check for the existence of the right child. If it doesn't exist,

we'll make the right child as the new_node or else we'll

continue with the inorder traversal of the right child.

Here’s the Pseudo-code to run this operation-

TreeNode insert_node_inorder(TreeNode root, TreeNode

new_node)

{

 if (root == NULL)

 return new_node

552

 if (root.left == NULL)

 root.left = new_node

 else

 root.left = insert_node_inorder(root.left, new_node)

 if (root.right == NULL)

 root.right = new_node

 else

 root.right = insert_node_inorder(root.right, new_node)

 return root

}

Searching

It's a simple process in a binary tree. We just need to check if

the current node's value matches the required value and keep

repeating the same process to the left and right subtrees using a

recursive algorithm until we find the match.

bool search(TreeNode root, int item)

{

 if (root == NULL)

 return 0

 if (root.val == item)

 return 1

553

 if (search(root.left, item) == 1)

 return 1

 else if (search(root.right, item) == 1)

 return 1

 else

 return 0

}

Deletion

It's a bit tricky process when it comes to the tree data structure.

There are a few complications that come with deleting a node

such as-

 If we delete a node, what happens to the left child and the

right child?

 What if the node to be deleted is itself a leaf node?

Simplifying this - the purpose is to accept the root node of the

tree and value item and return the root of the modified tree after

we have deleted the node.

 Firstly, we'll check if the tree is empty i.e. the root is

NULL. If yes, we'll simply return the root.

 We'll then search for an item in the left and the right

subtree and recurse if found.

 If we don't find the item in both the subtrees, either the

value is not in the tree or root.val == item.

554

 Now we need to delete the root node of the tree. It has

three possible cases.

CASE 1 - The node to be deleted is a leaf node.

In this case, we'll simply delete the root and free the allocated

space.

CASE 2 - It has only one child.

We can't delete the root directly as there's a child node attached

to it. So, we'll replace the root with the child node.

CASE 3 - It has two children nodes.

In this case, we'll keep replacing the node to be deleted with its

in-order successor recursively until it's placed on the leftmost

leaf node. Then, we'll replace the node with NULL and delete

the allocated space.

In other words, we'll replace the node to be deleted with the

leftmost node of the tree and then delete the new leaf node.

This way, there's always a root at the top and the tree shrinks

from the bottom.

Here’s the pseudo-code to execute a deletion:

555

TreeNode delete_element(TreeNode root, int item)

{

 if (root == NULL)

 return root

 if (search(root.left, item) == True)

 root.left = delete_element(root.left, item)

 else if (search(root.right, item) == True)

 root.right = delete_element(root.right, item)

 else if (root.val == item)

 {

 // No child exists

 if (root.left == NULL and root.right == NULL)

 delete root

 // Only one child exists

 else if (root.left == NULL or root.right == NULL)

 {

 if (root.left == NULL)

 return root.right

 else

556

 return root.left

 }

 // Both left and right child exists

 else

 {

 TreeNode selected_node = root

 while (selected_node.left != NULL)

 selected_node = selected_node.left

 root.val = selected_node.val

 root.left = delete_element(root.left, selected_node.val)

 }

 }

 return root

}

Applications of Tree Data Structure

As we've mentioned above, tree data structure stores data in a

hierarchical manner. Nodes are arranged at multiple levels.

 Information stored in the computer is in a hierarchical

manner. There are drives that contain multiple folders.

Each folder can have multiple subfolders. And then there

are files like documents, images, etc.

