
514

Advantages of Threaded Binary Tree

 In this Tree it enables linear traversal of elements.

 It eliminates the use of stack as it perform linear

traversal.

 Enables to find parent node without explicit use of

parent pointer

 Threaded tree give forward and backward traversal of

nodes by in-order fashion

 Nodes contain pointers to in-order predecessor and

successor

Binary Search Tree:

In this article, we will discuss the Binary search tree. This

article will be very helpful and informative to the students with

technical background as it is an important topic of their course.

Before moving directly to the binary search tree, let's first see

a brief description of the tree.

What is a tree?

A tree is a kind of data structure that is used to represent the

data in hierarchical form. It can be defined as a collection of

objects or entities called as nodes that are linked together to

simulate a hierarchy. Tree is a non-linear data structure as the

data in a tree is not stored linearly or sequentially.

Now, let's start the topic, the Binary Search tree.

What is a Binary Search tree?

A binary search tree follows some order to arrange the

elements. In a Binary search tree, the value of left node must be

smaller than the parent node, and the value of right node must

be greater than the parent node. This rule is applied recursively

to the left and right subtrees of the root.

515

Let's understand the concept of Binary search tree with an

example.

In the above figure, we can observe that the root node is 40, and

all the nodes of the left subtree are smaller than the root node,

and all the nodes of the right subtree are greater than the root

node.

Similarly, we can see the left child of root node is greater than

its left child and smaller than its right child. So, it also satisfies

the property of binary search tree. Therefore, we can say that

the tree in the above image is a binary search tree.

Suppose if we change the value of node 35 to 55 in the above

tree, check whether the tree will be binary search tree or not.

516

In the above tree, the value of root node is 40, which is greater

than its left child 30 but smaller than right child of 30, i.e., 55.

So, the above tree does not satisfy the property of Binary search

tree. Therefore, the above tree is not a binary search tree.

Advantages of Binary search tree

 Searching an element in the Binary search tree is easy as

we always have a hint that which subtree has the desired

element.

 As compared to array and linked lists, insertion and

deletion operations are faster in BST.

Example of creating a binary search tree

Now, let's see the creation of binary search tree using an

example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20,

50

 First, we have to insert 45 into the tree as the root of the

tree.

 Then, read the next element; if it is smaller than the root

node, insert it as the root of the left subtree, and move to

the next element.

 Otherwise, if the element is larger than the root node, then

insert it as the root of the right subtree.

Now, let's see the process of creating the Binary search tree

using the given data element. The process of creating the BST

is shown below -

Step 1 - Insert 45.

517

Step 2 - Insert 15.
As 15 is smaller than 45, so insert it as the root node of the left

subtree.

Step 3 - Insert 79.
As 79 is greater than 45, so insert it as the root node of the right

subtree.

Step 4 - Insert 90.
90 is greater than 45 and 79, so it will be inserted as the right

subtree of 79.

518

Step 5 - Insert 10.
10 is smaller than 45 and 15, so it will be inserted as a left

subtree of 15.

Step 6 - Insert 55.
55 is larger than 45 and smaller than 79, so it will be inserted

as the left subtree of 79.

519

Step 7 - Insert 12.
12 is smaller than 45 and 15 but greater than 10, so it will be

inserted as the right subtree of 10.

Step 8 - Insert 20.
20 is smaller than 45 but greater than 15, so it will be inserted

as the right subtree of 15.

520

Step 9 - Insert 50.
50 is greater than 45 but smaller than 79 and 55. So, it will be

inserted as a left subtree of 55.

521

Now, the creation of binary search tree is completed. After that,

let's move towards the operations that can be performed on

Binary search tree.

We can perform insert, delete and search operations on the

binary search tree.

Let's understand how a search is performed on a binary search

tree.

Searching in Binary search tree

Searching means to find or locate a specific element or node in

a data structure. In Binary search tree, searching a node is easy

because elements in BST are stored in a specific order. The

steps of searching a node in Binary Search tree are listed as

follows -

1. First, compare the element to be searched with the root

element of the tree.

2. If root is matched with the target element, then return the

node's location.

3. If it is not matched, then check whether the item is less

than the root element, if it is smaller than the root element,

then move to the left subtree.

4. If it is larger than the root element, then move to the right

subtree.

5. Repeat the above procedure recursively until the match is

found.

6. If the element is not found or not present in the tree, then

return NULL.

Now, let's understand the searching in binary tree using an

example. We are taking the binary search tree formed above.

Suppose we have to find node 20 from the below tree.

Step1:

522

Step2:

Step3:

523

Now, let's see the algorithm to search an element in the Binary

search tree.

Algorithm to search an element in Binary search tree

1. Search (root, item)

2. Step 1 - if (item = root → data) or (root = NULL)

3. return root

4. else if (item < root → data)

5. return Search(root → left, item)

6. else

7. return Search(root → right, item)

8. END if

9. Step 2 - END

Now let's understand how the deletion is performed on a binary

search tree. We will also see an example to delete an element

from the given tree.

Deletion in Binary Search tree

In a binary search tree, we must delete a node from the tree by

keeping in mind that the property of BST is not violated. To

delete a node from BST, there are three possible situations

occur -

 The node to be deleted is the leaf node, or,

 The node to be deleted has only one child, and,

 The node to be deleted has two children

We will understand the situations listed above in detail.

When the node to be deleted is the leaf node
It is the simplest case to delete a node in BST. Here, we have

to replace the leaf node with NULL and simply free the

allocated space.

We can see the process to delete a leaf node from BST in the

below image. In below image, suppose we have to delete node

524

90, as the node to be deleted is a leaf node, so it will be replaced

with NULL, and the allocated space will free.

When the node to be deleted has only one child
In this case, we have to replace the target node with its child,

and then delete the child node. It means that after replacing the

target node with its child node, the child node will now contain

the value to be deleted. So, we simply have to replace the child

node with NULL and free up the allocated space.

We can see the process of deleting a node with one child from

BST in the below image. In the below image, suppose we have

to delete the node 79, as the node to be deleted has only one

child, so it will be replaced with its child 55.

So, the replaced node 79 will now be a leaf node that can be

easily deleted.

When the node to be deleted has two children

525

This case of deleting a node in BST is a bit complex among

other two cases. In such a case, the steps to be followed are

listed as follows -

 First, find the inorder successor of the node to be deleted.

 After that, replace that node with the inorder successor

until the target node is placed at the leaf of tree.

 And at last, replace the node with NULL and free up the

allocated space.

The inorder successor is required when the right child of the

node is not empty. We can obtain the inorder successor by

finding the minimum element in the right child of the node.

We can see the process of deleting a node with two children

from BST in the below image. In the below image, suppose we

have to delete node 45 that is the root node, as the node to be

deleted has two children, so it will be replaced with its inorder

successor. Now, node 45 will be at the leaf of the tree so that it

can be deleted easily.

Now let's understand how insertion is performed on a binary

search tree.

Insertion in Binary Search tree

A new key in BST is always inserted at the leaf. To insert an

element in BST, we have to start searching from the root node;

if the node to be inserted is less than the root node, then search

526

for an empty location in the left subtree. Else, search for the

empty location in the right subtree and insert the data. Insert in

BST is similar to searching, as we always have to maintain the

rule that the left subtree is smaller than the root, and right

subtree is larger than the root.

Now, let's see the process of inserting a node into BST using an

example.

The complexity of the Binary Search tree

Let's see the time and space complexity of the Binary search

tree. We will see the time complexity for insertion, deletion,

and searching operations in best case, average case, and worst

case.

527

1. Time Complexity

Operations Best case

time

complexity

Average case

time

complexity

Worst case

time

complexity

Insertion O(log n) O(log n) O(n)

Deletion O(log n) O(log n) O(n)

Search O(log n) O(log n) O(n)

Where 'n' is the number of nodes in the given tree.

2. Space Complexity

Operations Space complexity

Insertion O(n)

Deletion O(n)

528

Search O(n)

 The space complexity of all operations of Binary search

tree is O(n).

Implementation of Binary search tree

Now, let's see the program to implement the operations of

Binary Search tree.

Program: Write a program to perform operations of Binary

Search tree in C++.

In this program, we will see the implementation of the

operations of binary search tree. Here, we will see the creation,

inorder traversal, insertion, and deletion operations of tree.

Here, we will see the inorder traversal of the tree to check

whether the nodes of the tree are in their proper location or not.

We know that the inorder traversal always gives us the data in

ascending order. So, after performing the insertion and deletion

operations, we perform the inorder traversal, and after

traversing, if we get data in ascending order, then it is clear that

the nodes are in their proper location.

1. #include <iostream>

2. using namespace std;

3. struct Node {

4. int data;

5. Node *left;

6. Node *right;

7. };

8. Node* create(int item)

9. {

10. Node* node = new Node;

11. node->data = item;

529

12. node->left = node->right = NULL;

13. return node;

14. }

15. /*Inorder traversal of the tree formed*/

16. void inorder(Node *root)

17. {

18. if (root == NULL)

19. return;

20. inorder(root->left); //traverse left subtree

21. cout<< root->data << " "; //traverse root node

22. inorder(root->right); //traverse right subtree

23. }

24. Node* findMinimum(Node* cur) /*To find the

inorder successor*/

25. {

26. while(cur->left != NULL) {

27. cur = cur->left;

28. }

29. return cur;

30. }

31. Node* insertion(Node* root, int item) /*Insert a

node*/

32. {

33. if (root == NULL)

34. return create(item); /*return new node if tree is

empty*/

35. if (item < root->data)

36. root->left = insertion(root->left, item);

37. else

38. root->right = insertion(root->right, item);

39. return root;

40. }

41. void search(Node* &cur, int item, Node* &parent)

530

42. {

43. while (cur != NULL && cur->data != item)

44. {

45. parent = cur;

46. if (item < cur->data)

47. cur = cur->left;

48. else

49. cur = cur->right;

50. }

51. }

52. void deletion(Node*& root, int item) /*function to

delete a node*/

53. {

54. Node* parent = NULL;

55. Node* cur = root;

56. search(cur, item, parent); /*find the node to be

deleted*/

57. if (cur == NULL)

58. return;

59. if (cur->left == NULL && cur->right == NULL)

/*When node has no children*/

60. {

61. if (cur != root)

62. {

63. if (parent->left == cur)

64. parent->left = NULL;

65. else

66. parent->right = NULL;

67. }

68. else

69. root = NULL;

70. free(cur);

71. }

531

72. else if (cur->left && cur->right)

73. {

74. Node* succ = findMinimum(cur->right);

75. int val = succ->data;

76. deletion(root, succ->data);

77. cur->data = val;

78. }

79. else

80. {

81. Node* child = (cur->left)? cur->left: cur-

>right;

82. if (cur != root)

83. {

84. if (cur == parent->left)

85. parent->left = child;

86. else

87. parent->right = child;

88. }

89. else

90. root = child;

91. free(cur);

92. }

93. }

94. int main()

95. {

96. Node* root = NULL;

97. root = insertion(root, 45);

98. root = insertion(root, 30);

99. root = insertion(root, 50);

100. root = insertion(root, 25);

101. root = insertion(root, 35);

102. root = insertion(root, 45);

103. root = insertion(root, 60);

532

104. root = insertion(root, 4);

105. printf("The inorder traversal of the given binary tree

is - \n");

106. inorder(root);

107. deletion(root, 25);

108. printf("\nAfter deleting node 25, the inorder

traversal of the given binary tree is - \n");

109. inorder(root);

110. insertion(root, 2);

111. printf("\nAfter inserting node 2, the inorder

traversal of the given binary tree is - \n");

112. inorder(root);

113. return 0;

114. }

Output
After the execution of the above code, the output will be -

AVL Tree:

AVL Tree is invented by GM Adelson - Velsky and EM Landis

in 1962. The tree is named AVL in honour of its inventors.

AVL Tree can be defined as height balanced binary search tree

in which each node is associated with a balance factor which is

calculated by subtracting the height of its right sub-tree from

that of its left sub-tree.

533

Tree is said to be balanced if balance factor of each node is in

between -1 to 1, otherwise, the tree will be unbalanced and need

to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

If balance factor of any node is 1, it means that the left sub-tree

is one level higher than the right sub-tree.

If balance factor of any node is 0, it means that the left sub-tree

and right sub-tree contain equal height.

If balance factor of any node is -1, it means that the left sub-

tree is one level lower than the right sub-tree.

An AVL tree is given in the following figure. We can see that,

balance factor associated with each node is in between -1 and

+1. therefore, it is an example of AVL tree.

534

Complexity

Algorithm Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)

Operations on AVL tree

Due to the fact that, AVL tree is also a binary search tree

therefore, all the operations are performed in the same way as

they are performed in a binary search tree. Searching and

traversing do not lead to the violation in property of AVL tree.

However, insertion and deletion are the operations which can

violate this property and therefore, they need to be revisited.

SN Operation Description

535

1 Insertion Insertion in AVL tree is performed in the

same way as it is performed in a binary

search tree. However, it may lead to

violation in the AVL tree property and

therefore the tree may need balancing.

The tree can be balanced by applying

rotations.

2 Deletion Deletion can also be performed in the

same way as it is performed in a binary

search tree. Deletion may also disturb the

balance of the tree therefore, various types

of rotations are used to rebalance the tree.

Why AVL Tree?

AVL tree controls the height of the binary search tree by not

letting it to be skewed. The time taken for all operations in a

binary search tree of height h is O(h). However, it can be

extended to O(n) if the BST becomes skewed (i.e. worst case).

536

By limiting this height to log n, AVL tree imposes an upper

bound on each operation to be O(log n) where n is the number

of nodes.

AVL Rotations

We perform rotation in AVL tree only in case if Balance Factor

is other than -1, 0, and 1. There are basically four types of

rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left

subtree of A

2. R R rotation : Inserted node is in the right subtree of right

subtree of A

3. L R rotation : Inserted node is in the right subtree of left

subtree of A

4. R L rotation : Inserted node is in the left subtree of right

subtree of A

Where node A is the node whose balance Factor is other than -

1, 0, 1.

The first two rotations LL and RR are single rotations and the

next two rotations LR and RL are double rotations. For a tree

to be unbalanced, minimum height must be at least 2, Let us

understand each rotation

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into

the right subtree of the right subtree of A, then we perform RR

rotation, RR rotation is an anticlockwise rotation, which is

applied on the edge below a node having balance factor -2

537

In above example, node A has balance factor -2 because a node

C is inserted in the right subtree of A right subtree. We perform

the RR rotation on the edge below A.

2. LL Rotation

When BST becomes unbalanced, due to a node is inserted into

the left subtree of the left subtree of C, then we perform LL

rotation, LL rotation is clockwise rotation, which is applied on

the edge below a node having balance factor 2.

In above example, node C has balance factor 2 because a node

A is inserted in the left subtree of C left subtree. We perform

the LL rotation on the edge below A.

3. LR Rotation

Double rotations are bit tougher than single rotation which has

already explained above. LR rotation = RR rotation + LL

rotation, i.e., first RR rotation is performed on subtree and then

LL rotation is performed on full tree, by full tree we mean the

first node from the path of inserted node whose balance factor

is other than -1, 0, or 1.

538

Let us understand each and every step very clearly:

State Action

A node B has been inserted into the right

subtree of A the left subtree of C, because of

which C has become an unbalanced node

having balance factor 2. This case is L R

rotation where: Inserted node is in the right

subtree of left subtree of C

As LR rotation = RR + LL rotation, hence RR

(anticlockwise) on subtree rooted at A is

performed first. By doing RR rotation, node

A, has become the left subtree of B.

539

After performing RR rotation, node C is still

unbalanced, i.e., having balance factor 2, as

inserted node A is in the left of left of C

Now we perform LL clockwise rotation on

full tree, i.e. on node C. node C has now

become the right subtree of node B, A is left

subtree of B

Balance factor of each node is now either -1,

0, or 1, i.e. BST is balanced now.

4. RL Rotation

As already discussed, that double rotations are bit tougher than

single rotation which has already explained above. R L rotation

= LL rotation + RR rotation, i.e., first LL rotation is performed

on subtree and then RR rotation is performed on full tree, by

full tree we mean the first node from the path of inserted node

whose balance factor is other than -1, 0, or 1.

540

State Action

A node B has been inserted into the left

subtree of C the right subtree of A, because of

which A has become an unbalanced node

having balance factor - 2. This case is RL

rotation where: Inserted node is in the left

subtree of right subtree of A

As RL rotation = LL rotation + RR rotation,

hence, LL (clockwise) on subtree rooted at C

is performed first. By doing RR rotation, node

C has become the right subtree of B.

541

After performing LL rotation, node A is still

unbalanced, i.e. having balance factor -2,

which is because of the right-subtree of the

right-subtree node A.

Now we perform RR rotation (anticlockwise

rotation) on full tree, i.e. on node A. node C

has now become the right subtree of node B,

and node A has become the left subtree of B.

Balance factor of each node is now either -1,

0, or 1, i.e., BST is balanced now.

Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

542

On inserting the above elements, especially in the case of H,

the BST becomes unbalanced as the Balance Factor of H is -2.

Since the BST is right-skewed, we will perform RR Rotation

on node H.

The resultant balance tree is:

2. Insert B, A

543

On inserting the above elements, especially in case of A, the

BST becomes unbalanced as the Balance Factor of H and I is

2, we consider the first node from the last inserted node i.e. H.

Since the BST from H is left-skewed, we will perform LL

Rotation on node H.

The resultant balance tree is:

544

3. Insert E

On inserting E, BST becomes unbalanced as the Balance Factor

of I is 2, since if we travel from E to I we find that it is inserted

545

in the left subtree of right subtree of I, we will perform LR

Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

546

4. Insert C, F, D

547

On inserting C, F, D, BST becomes unbalanced as the Balance

Factor of B and H is -2, since if we travel from D to B we find

that it is inserted in the right subtree of left subtree of B, we will

perform RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

5. Insert G

548

On inserting G, BST become unbalanced as the Balance Factor

of H is 2, since if we travel from G to H, we find that it is

inserted in the left subtree of right subtree of H, we will perform

LR Rotation on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

549

6. Insert K

On inserting K, BST becomes unbalanced as the Balance

Factor of I is -2. Since the BST is right-skewed from I to K,

hence we will perform RR Rotation on the node I.

The resultant balanced tree after RR rotation is:

550

7. Insert L
On inserting the L tree is still balanced as the Balance Factor of

each node is now either, -1, 0, +1. Hence the tree is a Balanced

AVL tree

Tree operations on each of the trees and their

algorithms with complexity analysis:

Basic operations of a tree

Here are a few basic operations you can perform on a tree:

