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Advantages of Threaded Binary Tree 

 In this Tree it enables linear traversal of elements. 

 It eliminates the use of stack as it perform linear 

traversal. 

 Enables to find parent node without explicit use of 

parent pointer 

 Threaded tree give forward and backward traversal of 

nodes by in-order fashion 

 Nodes contain pointers to in-order predecessor and 

successor 

  

Binary Search Tree: 

In this article, we will discuss the Binary search tree. This 

article will be very helpful and informative to the students with 

technical background as it is an important topic of their course. 

Before moving directly to the binary search tree, let's first see 

a brief description of the tree. 

What is a tree? 

A tree is a kind of data structure that is used to represent the 

data in hierarchical form. It can be defined as a collection of 

objects or entities called as nodes that are linked together to 

simulate a hierarchy. Tree is a non-linear data structure as the 

data in a tree is not stored linearly or sequentially. 

Now, let's start the topic, the Binary Search tree. 

What is a Binary Search tree? 

A binary search tree follows some order to arrange the 

elements. In a Binary search tree, the value of left node must be 

smaller than the parent node, and the value of right node must 

be greater than the parent node. This rule is applied recursively 

to the left and right subtrees of the root. 
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Let's understand the concept of Binary search tree with an 

example. 

 

In the above figure, we can observe that the root node is 40, and 

all the nodes of the left subtree are smaller than the root node, 

and all the nodes of the right subtree are greater than the root 

node. 

Similarly, we can see the left child of root node is greater than 

its left child and smaller than its right child. So, it also satisfies 

the property of binary search tree. Therefore, we can say that 

the tree in the above image is a binary search tree. 

Suppose if we change the value of node 35 to 55 in the above 

tree, check whether the tree will be binary search tree or not. 
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In the above tree, the value of root node is 40, which is greater 

than its left child 30 but smaller than right child of 30, i.e., 55. 

So, the above tree does not satisfy the property of Binary search 

tree. Therefore, the above tree is not a binary search tree. 

Advantages of Binary search tree 

 Searching an element in the Binary search tree is easy as 

we always have a hint that which subtree has the desired 

element. 

 As compared to array and linked lists, insertion and 

deletion operations are faster in BST. 

Example of creating a binary search tree 

Now, let's see the creation of binary search tree using an 

example. 

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 

50 

 First, we have to insert 45 into the tree as the root of the 

tree. 

 Then, read the next element; if it is smaller than the root 

node, insert it as the root of the left subtree, and move to 

the next element. 

 Otherwise, if the element is larger than the root node, then 

insert it as the root of the right subtree. 

Now, let's see the process of creating the Binary search tree 

using the given data element. The process of creating the BST 

is shown below - 

Step 1 - Insert 45. 
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Step 2 - Insert 15. 
As 15 is smaller than 45, so insert it as the root node of the left 

subtree. 

 

Step 3 - Insert 79. 
As 79 is greater than 45, so insert it as the root node of the right 

subtree. 

 

Step 4 - Insert 90. 
90 is greater than 45 and 79, so it will be inserted as the right 

subtree of 79. 
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Step 5 - Insert 10. 
10 is smaller than 45 and 15, so it will be inserted as a left 

subtree of 15. 

 

Step 6 - Insert 55. 
55 is larger than 45 and smaller than 79, so it will be inserted 

as the left subtree of 79. 
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Step 7 - Insert 12. 
12 is smaller than 45 and 15 but greater than 10, so it will be 

inserted as the right subtree of 10. 

 

Step 8 - Insert 20. 
20 is smaller than 45 but greater than 15, so it will be inserted 

as the right subtree of 15. 
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Step 9 - Insert 50. 
50 is greater than 45 but smaller than 79 and 55. So, it will be 

inserted as a left subtree of 55. 
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Now, the creation of binary search tree is completed. After that, 

let's move towards the operations that can be performed on 

Binary search tree. 

We can perform insert, delete and search operations on the 

binary search tree. 

Let's understand how a search is performed on a binary search 

tree. 

Searching in Binary search tree 

Searching means to find or locate a specific element or node in 

a data structure. In Binary search tree, searching a node is easy 

because elements in BST are stored in a specific order. The 

steps of searching a node in Binary Search tree are listed as 

follows - 

1. First, compare the element to be searched with the root 

element of the tree. 

2. If root is matched with the target element, then return the 

node's location. 

3. If it is not matched, then check whether the item is less 

than the root element, if it is smaller than the root element, 

then move to the left subtree. 

4. If it is larger than the root element, then move to the right 

subtree. 

5. Repeat the above procedure recursively until the match is 

found. 

6. If the element is not found or not present in the tree, then 

return NULL. 

Now, let's understand the searching in binary tree using an 

example. We are taking the binary search tree formed above. 

Suppose we have to find node 20 from the below tree. 

Step1: 
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Step2: 

 

Step3: 
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Now, let's see the algorithm to search an element in the Binary 

search tree. 

Algorithm to search an element in Binary search tree 

1. Search (root, item)   

2. Step 1 - if (item = root → data) or (root = NULL)   

3. return root   

4. else if (item < root → data)   

5. return Search(root → left, item)   

6. else   

7. return Search(root → right, item)   

8. END if   

9. Step 2 - END   

Now let's understand how the deletion is performed on a binary 

search tree. We will also see an example to delete an element 

from the given tree. 

Deletion in Binary Search tree 

In a binary search tree, we must delete a node from the tree by 

keeping in mind that the property of BST is not violated. To 

delete a node from BST, there are three possible situations 

occur - 

 The node to be deleted is the leaf node, or, 

 The node to be deleted has only one child, and, 

 The node to be deleted has two children 

We will understand the situations listed above in detail. 

When the node to be deleted is the leaf node 
It is the simplest case to delete a node in BST. Here, we have 

to replace the leaf node with NULL and simply free the 

allocated space. 

We can see the process to delete a leaf node from BST in the 

below image. In below image, suppose we have to delete node 
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90, as the node to be deleted is a leaf node, so it will be replaced 

with NULL, and the allocated space will free. 

 

When the node to be deleted has only one child 
In this case, we have to replace the target node with its child, 

and then delete the child node. It means that after replacing the 

target node with its child node, the child node will now contain 

the value to be deleted. So, we simply have to replace the child 

node with NULL and free up the allocated space. 

We can see the process of deleting a node with one child from 

BST in the below image. In the below image, suppose we have 

to delete the node 79, as the node to be deleted has only one 

child, so it will be replaced with its child 55. 

So, the replaced node 79 will now be a leaf node that can be 

easily deleted. 

 

When the node to be deleted has two children 
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This case of deleting a node in BST is a bit complex among 

other two cases. In such a case, the steps to be followed are 

listed as follows - 

 First, find the inorder successor of the node to be deleted. 

 After that, replace that node with the inorder successor 

until the target node is placed at the leaf of tree. 

 And at last, replace the node with NULL and free up the 

allocated space. 

The inorder successor is required when the right child of the 

node is not empty. We can obtain the inorder successor by 

finding the minimum element in the right child of the node. 

We can see the process of deleting a node with two children 

from BST in the below image. In the below image, suppose we 

have to delete node 45 that is the root node, as the node to be 

deleted has two children, so it will be replaced with its inorder 

successor. Now, node 45 will be at the leaf of the tree so that it 

can be deleted easily. 

 

Now let's understand how insertion is performed on a binary 

search tree. 

Insertion in Binary Search tree 

A new key in BST is always inserted at the leaf. To insert an 

element in BST, we have to start searching from the root node; 

if the node to be inserted is less than the root node, then search 
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for an empty location in the left subtree. Else, search for the 

empty location in the right subtree and insert the data. Insert in 

BST is similar to searching, as we always have to maintain the 

rule that the left subtree is smaller than the root, and right 

subtree is larger than the root. 

Now, let's see the process of inserting a node into BST using an 

example. 

 

 

The complexity of the Binary Search tree 

Let's see the time and space complexity of the Binary search 

tree. We will see the time complexity for insertion, deletion, 

and searching operations in best case, average case, and worst 

case. 



527 
 

1. Time Complexity 

Operations Best case 

time 

complexity 

Average case 

time 

complexity 

Worst case 

time 

complexity 

Insertion O(log n) O(log n) O(n) 

Deletion O(log n) O(log n) O(n) 

Search O(log n) O(log n) O(n) 

Where 'n' is the number of nodes in the given tree. 

2. Space Complexity 

Operations Space complexity 

Insertion O(n) 

Deletion O(n) 
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Search O(n) 

 The space complexity of all operations of Binary search 

tree is O(n). 

Implementation of Binary search tree 

Now, let's see the program to implement the operations of 

Binary Search tree. 

Program: Write a program to perform operations of Binary 

Search tree in C++. 

In this program, we will see the implementation of the 

operations of binary search tree. Here, we will see the creation, 

inorder traversal, insertion, and deletion operations of tree. 

Here, we will see the inorder traversal of the tree to check 

whether the nodes of the tree are in their proper location or not. 

We know that the inorder traversal always gives us the data in 

ascending order. So, after performing the insertion and deletion 

operations, we perform the inorder traversal, and after 

traversing, if we get data in ascending order, then it is clear that 

the nodes are in their proper location. 

1. #include <iostream>   

2. using namespace std;   

3. struct Node {   

4.     int data;   

5.     Node *left;   

6.     Node *right;   

7. };   

8. Node* create(int item)   

9. {   

10.     Node* node = new Node;   

11.     node->data = item;   
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12.     node->left = node->right = NULL;   

13.     return node;   

14. }   

15. /*Inorder traversal of the tree formed*/   

16. void inorder(Node *root)   

17. {   

18.     if (root == NULL)   

19.         return;   

20.     inorder(root->left); //traverse left subtree   

21.     cout<< root->data << "   "; //traverse root node   

22.     inorder(root->right); //traverse right subtree   

23. }   

24. Node* findMinimum(Node* cur) /*To find the 

inorder successor*/   

25. {   

26.     while(cur->left != NULL) {   

27.         cur = cur->left;   

28.     }   

29.     return cur;   

30. }   

31. Node* insertion(Node* root, int item) /*Insert a 

node*/   

32. {   

33.     if (root == NULL)   

34.         return create(item); /*return new node if tree is 

empty*/   

35.     if (item < root->data)   

36.         root->left = insertion(root->left, item);   

37.     else   

38.         root->right = insertion(root->right, item);   

39.     return root;   

40. }   

41. void search(Node* &cur, int item, Node* &parent)   
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42. {   

43.     while (cur != NULL && cur->data != item)   

44.     {   

45.         parent = cur;   

46.         if (item < cur->data)   

47.             cur = cur->left;   

48.         else   

49.             cur = cur->right;   

50.     }   

51. }   

52. void deletion(Node*& root, int item) /*function to 

delete a node*/   

53. {   

54.     Node* parent = NULL;   

55.     Node* cur = root;   

56.     search(cur, item, parent); /*find the node to be 

deleted*/   

57.     if (cur == NULL)   

58.         return;   

59.     if (cur->left == NULL && cur->right == NULL) 

/*When node has no children*/   

60.     {   

61.         if (cur != root)   

62.         {   

63.             if (parent->left == cur)   

64.                 parent->left = NULL;   

65.             else   

66.                 parent->right = NULL;   

67.         }   

68.         else   

69.             root = NULL;   

70.         free(cur);        

71.     }   
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72.     else if (cur->left && cur->right)   

73.     {   

74.         Node* succ  = findMinimum(cur->right);   

75.         int val = succ->data;   

76.         deletion(root, succ->data);   

77.         cur->data = val;   

78.     }   

79.     else   

80.     {   

81.         Node* child = (cur->left)? cur->left: cur-

>right;   

82.         if (cur != root)   

83.         {   

84.             if (cur == parent->left)   

85.                 parent->left = child;   

86.             else   

87.                 parent->right = child;   

88.         }   

89.         else   

90.             root = child;   

91.         free(cur);   

92.     }   

93. }   

94. int main()   

95. {   

96.   Node* root = NULL;   

97.   root = insertion(root, 45);   

98.   root = insertion(root, 30);   

99.   root = insertion(root, 50);   

100.   root = insertion(root, 25);   

101.   root = insertion(root, 35);   

102.   root = insertion(root, 45);   

103.   root = insertion(root, 60);   
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104.   root = insertion(root, 4);   

105.   printf("The inorder traversal of the given binary tree 

is - \n");   

106.   inorder(root);   

107.   deletion(root, 25);   

108.   printf("\nAfter deleting node 25, the inorder 

traversal of the given binary tree is - \n");   

109.   inorder(root);    

110.   insertion(root, 2);   

111.   printf("\nAfter inserting node 2, the inorder 

traversal of the given binary tree is - \n");   

112.   inorder(root);   

113.   return 0;   

114. }   

Output 
After the execution of the above code, the output will be - 

 

 

AVL Tree: 

AVL Tree is invented by GM Adelson - Velsky and EM Landis 

in 1962. The tree is named AVL in honour of its inventors. 

AVL Tree can be defined as height balanced binary search tree 

in which each node is associated with a balance factor which is 

calculated by subtracting the height of its right sub-tree from 

that of its left sub-tree. 
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Tree is said to be balanced if balance factor of each node is in 

between -1 to 1, otherwise, the tree will be unbalanced and need 

to be balanced. 

Balance Factor (k) = height (left(k)) - height (right(k)) 

If balance factor of any node is 1, it means that the left sub-tree 

is one level higher than the right sub-tree. 

If balance factor of any node is 0, it means that the left sub-tree 

and right sub-tree contain equal height. 

If balance factor of any node is -1, it means that the left sub-

tree is one level lower than the right sub-tree. 

An AVL tree is given in the following figure. We can see that, 

balance factor associated with each node is in between -1 and 

+1. therefore, it is an example of AVL tree. 
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Complexity 

Algorithm Average case Worst case 

Space o(n) o(n) 

Search o(log n) o(log n) 

Insert o(log n) o(log n) 

Delete o(log n) o(log n) 

Operations on AVL tree 

Due to the fact that, AVL tree is also a binary search tree 

therefore, all the operations are performed in the same way as 

they are performed in a binary search tree. Searching and 

traversing do not lead to the violation in property of AVL tree. 

However, insertion and deletion are the operations which can 

violate this property and therefore, they need to be revisited. 

SN Operation Description 
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1 Insertion Insertion in AVL tree is performed in the 

same way as it is performed in a binary 

search tree. However, it may lead to 

violation in the AVL tree property and 

therefore the tree may need balancing. 

The tree can be balanced by applying 

rotations. 

2 Deletion Deletion can also be performed in the 

same way as it is performed in a binary 

search tree. Deletion may also disturb the 

balance of the tree therefore, various types 

of rotations are used to rebalance the tree. 

Why AVL Tree? 

AVL tree controls the height of the binary search tree by not 

letting it to be skewed. The time taken for all operations in a 

binary search tree of height h is O(h). However, it can be 

extended to O(n) if the BST becomes skewed (i.e. worst case). 
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By limiting this height to log n, AVL tree imposes an upper 

bound on each operation to be O(log n) where n is the number 

of nodes. 

AVL Rotations 

We perform rotation in AVL tree only in case if Balance Factor 

is other than -1, 0, and 1. There are basically four types of 

rotations which are as follows: 

1. L L rotation: Inserted node is in the left subtree of left 

subtree of A 

2. R R rotation : Inserted node is in the right subtree of right 

subtree of A 

3. L R rotation : Inserted node is in the right subtree of left 

subtree of A 

4. R L rotation : Inserted node is in the left subtree of right 

subtree of A 

Where node A is the node whose balance Factor is other than -

1, 0, 1. 

The first two rotations LL and RR are single rotations and the 

next two rotations LR and RL are double rotations. For a tree 

to be unbalanced, minimum height must be at least 2, Let us 

understand each rotation 

1. RR Rotation 

When BST becomes unbalanced, due to a node is inserted into 

the right subtree of the right subtree of A, then we perform RR 

rotation, RR rotation is an anticlockwise rotation, which is 

applied on the edge below a node having balance factor -2 
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In above example, node A has balance factor -2 because a node 

C is inserted in the right subtree of A right subtree. We perform 

the RR rotation on the edge below A. 

2. LL Rotation 

When BST becomes unbalanced, due to a node is inserted into 

the left subtree of the left subtree of C, then we perform LL 

rotation, LL rotation is clockwise rotation, which is applied on 

the edge below a node having balance factor 2. 

 

In above example, node C has balance factor 2 because a node 

A is inserted in the left subtree of C left subtree. We perform 

the LL rotation on the edge below A. 

3. LR Rotation 

Double rotations are bit tougher than single rotation which has 

already explained above. LR rotation = RR rotation + LL 

rotation, i.e., first RR rotation is performed on subtree and then 

LL rotation is performed on full tree, by full tree we mean the 

first node from the path of inserted node whose balance factor 

is other than -1, 0, or 1. 
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Let us understand each and every step very clearly: 

State Action 

 

A node B has been inserted into the right 

subtree of A the left subtree of C, because of 

which C has become an unbalanced node 

having balance factor 2. This case is L R 

rotation where: Inserted node is in the right 

subtree of left subtree of C 

 

As LR rotation = RR + LL rotation, hence RR 

(anticlockwise) on subtree rooted at A is 

performed first. By doing RR rotation, node 

A, has become the left subtree of B. 
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After performing RR rotation, node C is still 

unbalanced, i.e., having balance factor 2, as 

inserted node A is in the left of left of C 

 

Now we perform LL clockwise rotation on 

full tree, i.e. on node C. node C has now 

become the right subtree of node B, A is left 

subtree of B 

 

Balance factor of each node is now either -1, 

0, or 1, i.e. BST is balanced now. 

4. RL Rotation 

As already discussed, that double rotations are bit tougher than 

single rotation which has already explained above. R L rotation 

= LL rotation + RR rotation, i.e., first LL rotation is performed 

on subtree and then RR rotation is performed on full tree, by 

full tree we mean the first node from the path of inserted node 

whose balance factor is other than -1, 0, or 1. 
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State Action 

 

A node B has been inserted into the left 

subtree of C the right subtree of A, because of 

which A has become an unbalanced node 

having balance factor - 2. This case is RL 

rotation where: Inserted node is in the left 

subtree of right subtree of A 

 

As RL rotation = LL rotation + RR rotation, 

hence, LL (clockwise) on subtree rooted at C 

is performed first. By doing RR rotation, node 

C has become the right subtree of B. 
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After performing LL rotation, node A is still 

unbalanced, i.e. having balance factor -2, 

which is because of the right-subtree of the 

right-subtree node A. 

 

Now we perform RR rotation (anticlockwise 

rotation) on full tree, i.e. on node A. node C 

has now become the right subtree of node B, 

and node A has become the left subtree of B. 

 

Balance factor of each node is now either -1, 

0, or 1, i.e., BST is balanced now. 

Q: Construct an AVL tree having the following elements 

H, I, J, B, A, E, C, F, D, G, K, L 

1. Insert H, I, J 
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On inserting the above elements, especially in the case of H, 

the BST becomes unbalanced as the Balance Factor of H is -2. 

Since the BST is right-skewed, we will perform RR Rotation 

on node H. 

The resultant balance tree is: 

 

2. Insert B, A 
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On inserting the above elements, especially in case of A, the 

BST becomes unbalanced as the Balance Factor of H and I is 

2, we consider the first node from the last inserted node i.e. H. 

Since the BST from H is left-skewed, we will perform LL 

Rotation on node H. 

The resultant balance tree is: 
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3. Insert E 

 

On inserting E, BST becomes unbalanced as the Balance Factor 

of I is 2, since if we travel from E to I we find that it is inserted 
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in the left subtree of right subtree of I, we will perform LR 

Rotation on node I. LR = RR + LL rotation 

3 a) We first perform RR rotation on node B 

The resultant tree after RR rotation is: 

 

3b) We first perform LL rotation on the node I 

The resultant balanced tree after LL rotation is: 
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4. Insert C, F, D 
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On inserting C, F, D, BST becomes unbalanced as the Balance 

Factor of B and H is -2, since if we travel from D to B we find 

that it is inserted in the right subtree of left subtree of B, we will 

perform RL Rotation on node I. RL = LL + RR rotation. 

4a) We first perform LL rotation on node E 

The resultant tree after LL rotation is: 

 

4b) We then perform RR rotation on node B 

The resultant balanced tree after RR rotation is: 

 

5. Insert G 



548 
 

 

On inserting G, BST become unbalanced as the Balance Factor 

of H is 2, since if we travel from G to H, we find that it is 

inserted in the left subtree of right subtree of H, we will perform 

LR Rotation on node I. LR = RR + LL rotation. 

5 a) We first perform RR rotation on node C 

The resultant tree after RR rotation is: 

 

5 b) We then perform LL rotation on node H 

The resultant balanced tree after LL rotation is: 
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6. Insert K 

 

On inserting K, BST becomes unbalanced as the Balance 

Factor of I is -2. Since the BST is right-skewed from I to K, 

hence we will perform RR Rotation on the node I. 

The resultant balanced tree after RR rotation is: 
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7. Insert L 
On inserting the L tree is still balanced as the Balance Factor of 

each node is now either, -1, 0, +1. Hence the tree is a Balanced 

AVL tree 

 

Tree operations on each of the trees and their 

algorithms with complexity analysis: 

Basic operations of a tree 

Here are a few basic operations you can perform on a tree: 


