
497

Binary Tree:

The Binary tree means that the node can have maximum two

children. Here, binary name itself suggests that 'two'; therefore,

each node can have either 0, 1 or 2 children.

Let's understand the binary tree through an example.
The above tree is a binary tree because each node contains the

utmost two children. The logical representation of the above

tree is given below:

In the above tree, node 1 contains two pointers, i.e., left and a

right pointer pointing to the left and right node respectively.

The node 2 contains both the nodes (left and right node);

therefore, it has two pointers (left and right). The nodes 3, 5 and

6 are the leaf nodes, so all these nodes contain NULL pointer

on both left and right parts.

Properties of Binary Tree

 At each level of i, the maximum number of nodes is 2i.

 The height of the tree is defined as the longest path from

the root node to the leaf node. The tree which is shown

498

above has a height equal to 3. Therefore, the maximum

number of nodes at height 3 is equal to (1+2+4+8) = 15.

In general, the maximum number of nodes possible at

height h is (20 + 21 + 22+….2h) = 2h+1 -1.

 The minimum number of nodes possible at height h is

equal to h+1.

 If the number of nodes is minimum, then the height of the

tree would be maximum. Conversely, if the number of

nodes is maximum, then the height of the tree would be

minimum.

If there are 'n' number of nodes in the binary tree.

The minimum height can be computed as:
As we know that,

n = 2h+1 -1

n+1 = 2h+1

Taking log on both the sides,

log2(n+1) = log2(2h+1)

log2(n+1) = h+1

h = log2(n+1) - 1

The maximum height can be computed as:
As we know that,

n = h+1

h= n-1

Types of Binary Tree

There are four types of Binary tree:

 Full/ proper/ strict Binary tree

 Complete Binary tree

 Perfect Binary tree

 Degenerate Binary tree

 Balanced Binary tree

1. Full/ proper/ strict Binary tree

499

The full binary tree is also known as a strict binary tree. The

tree can only be considered as the full binary tree if each node

must contain either 0 or 2 children. The full binary tree can also

be defined as the tree in which each node must contain 2

children except the leaf nodes.

Let's look at the simple example of the Full Binary tree.

In the above tree, we can observe that each node is either

containing zero or two children; therefore, it is a Full Binary

tree.

Properties of Full Binary Tree

 The number of leaf nodes is equal to the number of

internal nodes plus 1. In the above example, the number

of internal nodes is 5; therefore, the number of leaf nodes

is equal to 6.

 The maximum number of nodes is the same as the number

of nodes in the binary tree, i.e., 2h+1 -1.

 The minimum number of nodes in the full binary tree is

2*h-1.

 The minimum height of the full binary tree is log2(n+1) -

1.

500

 The maximum height of the full binary tree can be

computed as:

n= 2*h - 1

n+1 = 2*h

h = n+1/2

Complete Binary Tree
The complete binary tree is a tree in which all the nodes are

completely filled except the last level. In the last level, all the

nodes must be as left as possible. In a complete binary tree, the

nodes should be added from the left.

Let's create a complete binary tree.

The above tree is a complete binary tree because all the nodes

are completely filled, and all the nodes in the last level are

added at the left first.

Properties of Complete Binary Tree

 The maximum number of nodes in complete binary tree is

2h+1 - 1.

501

 The minimum number of nodes in complete binary tree is

2h.

 The minimum height of a complete binary tree is

log2(n+1) - 1.
 The maximum height of a complete binary tree is

Perfect Binary Tree
A tree is a perfect binary tree if all the internal nodes have 2

children, and all the leaf nodes are at the same level.

Let's look at a simple example of a perfect binary tree.
The below tree is not a perfect binary tree because all the leaf

nodes are not at the same level.

502

Note: All the perfect binary trees are the complete binary trees

as well as the full binary tree, but vice versa is not true, i.e.,

all complete binary trees and full binary trees are the perfect

binary trees.

Degenerate Binary Tree

The degenerate binary tree is a tree in which all the internal

nodes have only one children.

Let's understand the Degenerate binary tree through

examples.

503

The above tree is a degenerate binary tree because all the nodes

have only one child. It is also known as a right-skewed tree as

all the nodes have a right child only.

504

The above tree is also a degenerate binary tree because all the

nodes have only one child. It is also known as a left-skewed

tree as all the nodes have a left child only.

Balanced Binary Tree
The balanced binary tree is a tree in which both the left and

right trees differ by atmost 1. For example, AVL and Red-Black

trees are balanced binary tree.

Let's understand the balanced binary tree through

examples.

505

The above tree is a balanced binary tree because the difference

between the left subtree and right subtree is zero.

506

The above tree is not a balanced binary tree because the

difference between the left subtree and the right subtree is

greater than 1.

Binary Tree Implementation

A Binary tree is implemented with the help of pointers. The

first node in the tree is represented by the root pointer. Each

node in the tree consists of three parts, i.e., data, left pointer and

right pointer. To create a binary tree, we first need to create the

node. We will create the node of user-defined as shown below:

1. struct node

2. {

3. int data,

4. struct node *left, *right;

5. }

In the above structure, data is the value, left pointer contains

the address of the left node, and right pointer contains the

address of the right node.

Binary Tree program in C

1. #include<stdio.h>

2. struct node

3. {

4. int data;

5. struct node *left, *right;

6. }

7. void main()

8. {

9. struct node *root;

10. root = create();

11. }

12. struct node *create()

13. {

507

14. struct node *temp;

15. int data;

16. temp = (struct node *)malloc(sizeof(struct

node));

17. printf("Press 0 to exit");

18. printf("\nPress 1 for new node");

19. printf("Enter your choice : ");

20. scanf("%d", &choice);

21. if(choice==0)

22. {

23. return 0;

24. }

25. else

26. {

27. printf("Enter the data:");

28. scanf("%d", &data);

29. temp->data = data;

30. printf("Enter the left child of %d", data);

31. temp->left = create();

32. printf("Enter the right child of %d", data);

33. temp->right = create();

34. return temp;

35. }

36. }

The above code is calling the create() function recursively and

creating new node on each recursive call. When all the nodes

are created, then it forms a binary tree structure. The process of

visiting the nodes is known as tree traversal. There are three

types traversals used to visit a node:

 Inorder traversal

 Preorder traversal

 Postorder traversal

508

Threaded Binary Tree:

Inorder traversal of a Binary tree can either be done using

recursion or with the use of a auxiliary stack. The idea of

threaded binary trees is to make inorder traversal faster and do

it without stack and without recursion. A binary tree is made

threaded by making all right child pointers that would normally

be NULL point to the inorder successor of the node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to

point to the inorder successor (if successor exists)

Double Threaded: Where both left and right NULL pointers

are made to point to inorder predecessor and inorder successor

respectively. The predecessor threads are useful for reverse

inorder traversal and postorder traversal.

The threads are also useful for fast accessing ancestors of a

node.

Following diagram shows an example Single Threaded Binary

Tree. The dotted lines represent threads.

509

C representation of a Threaded Node

Following is C representation of a single-threaded node.

 C

struct Node

{

 int data;

 struct Node *left, *right;

 bool rightThread;

}

Java representation of a Threaded Node
Following is Java representation of a single-threaded node.

510

 Java

 Python3

 C#

 Javascript

static class Node

{

 int data;

 Node left, right;

 boolean rightThread;

}

// This code contributed by aashish1995

Since right pointer is used for two purposes, the boolean

variable rightThread is used to indicate whether right pointer

points to right child or inorder successor. Similarly, we can add

leftThread for a double threaded binary tree.

Inorder Traversal using Threads

Following is code for inorder traversal in a threaded binary tree.

 C

 Java

 Python3

 C#

 Javascript

511

// Utility function to find leftmost node in a tree rooted

// with n

struct Node* leftMost(struct Node* n)

{

 if (n == NULL)

 return NULL;

 while (n->left != NULL)

 n = n->left;

 return n;

}

// C code to do inorder traversal in a threaded binary tree

void inOrder(struct Node* root)

{

 struct Node* cur = leftMost(root);

 while (cur != NULL) {

 printf("%d ", cur->data);

512

 // If this node is a thread node, then go to

 // inorder successor

 if (cur->rightThread)

 cur = cur->right;

 else // Else go to the leftmost child in right

 // subtree

 cur = leftmost(cur->right);

 }

}

Following diagram demonstrates inorder order traversal using

threads.

513

