
470

Trees:

Basic Tree Terminologies:

What is a Tree data structure?

A tree is non-linear and a hierarchical data structure

consisting of a collection of nodes such that each node of the

tree stores a value and a list of references to other nodes (the

“children”).

This data structure is a specialized method to organize and

store data in the computer to be used more effectively. It

consists of a central node, structural nodes, and sub-nodes,

which are connected via edges. We can also say that tree data

structure has roots, branches, and leaves connected with one

another.

Recursive Definition:

A tree consists of a root, and zero or more subtrees T1, T2, …

, Tk such that there is an edge from the root of the tree to the

root of each subtree.

471

Why Tree is considered a non-linear data structure?

The data in a tree are not stored in a sequential manner i.e,

they are not stored linearly. Instead, they are arranged on

multiple levels or we can say it is a hierarchical structure. For

this reason, the tree is considered to be a non-linear data

structure.

Basic Terminologies In Tree Data Structure:

 Parent Node: The node which is a predecessor of a

node is called the parent node of that node. {2} is the

parent node of {6, 7}.

 Child Node: The node which is the immediate

successor of a node is called the child node of that

node. Examples: {6, 7} are the child nodes of {2}.

 Root Node: The topmost node of a tree or the node

which does not have any parent node is called the root

node. {1} is the root node of the tree. A non-empty

tree must contain exactly one root node and exactly

one path from the root to all other nodes of the tree.

 Leaf Node or External Node: The nodes which do

not have any child nodes are called leaf nodes. {6, 14,

8, 9, 15, 16, 4, 11, 12, 17, 18, 19} are the leaf nodes of

the tree.

472

 Ancestor of a Node: Any predecessor nodes on the

path of the root to that node are called Ancestors of

that node. {1, 2} are the ancestor nodes of the node {7}

 Descendant: Any successor node on the path from the

leaf node to that node. {7, 14} are the descendants of

the node. {2}.

 Sibling: Children of the same parent node are called

siblings. {8, 9, 10} are called siblings.

 Level of a node: The count of edges on the path from

the root node to that node. The root node has level 0.

 Internal node: A node with at least one child is called

Internal Node.

 Neighbour of a Node: Parent or child nodes of that

node are called neighbors of that node.

 Subtree: Any node of the tree along with its

descendant.

Properties of a Tree:

 Number of edges: An edge can be defined as the

connection between two nodes. If a tree has N nodes

then it will have (N-1) edges. There is only one path

from each node to any other node of the tree.

 Depth of a node: The depth of a node is defined as the

length of the path from the root to that node. Each

edge adds 1 unit of length to the path. So, it can also

be defined as the number of edges in the path from the

root of the tree to the node.

 Height of a node: The height of a node can be defined

as the length of the longest path from the node to a leaf

node of the tree.

473

 Height of the Tree: The height of a tree is the length

of the longest path from the root of the tree to a leaf

node of the tree.

 Degree of a Node: The total count of subtrees

attached to that node is called the degree of the node.

The degree of a leaf node must be 0. The degree of a

tree is the maximum degree of a node among all the

nodes in the tree.

Some more properties are:

 Traversing in a tree is done by depth first search and

breadth first search algorithm.

 It has no loop and no circuit

 It has no self-loop

 Its hierarchical model.

Syntax:

struct Node

{

 int data;

 struct Node *left_child;

 struct Node *right_child;

};

474

Basic Operation Of Tree:

Create – create a tree in data structure.

Insert − Inserts data in a tree.

Search − Searches specific data in a tree to check it is

present or not.

Preorder Traversal – perform Traveling a tree in a pre-order

manner in data structure .

In order Traversal – perform Traveling a tree in an in-order

manner.

Post order Traversal –perform Traveling a tree in a post-

order manner.

Example of Tree data structure

Here,

Node A is the root node

B is the parent of D and E

D and E are the siblings

475

D, E, F and G are the leaf nodes

A and B are the ancestors of E

Few examples on Tree Data Structure: A code to

demonstrate few of the above terminologies has been

described below:

476

// C++ program to demonstrate some of the above

// terminologies

#include <bits/stdc++.h>

using namespace std;

// Function to add an edge between vertices x and y

void addEdge(int x, int y, vector<vector<int> >& adj)

{

 adj[x].push_back(y);

 adj[y].push_back(x);

}

// Function to print the parent of each node

void printParents(int node, vector<vector<int> >& adj,

 int parent)

{

 // current node is Root, thus, has no parent

 if (parent == 0)

 cout << node << "->Root" << endl;

 else

 cout << node << "->" << parent << endl;

 // Using DFS

477

 for (auto cur : adj[node])

 if (cur != parent)

 printParents(cur, adj, node);

}

// Function to print the children of each node

void printChildren(int Root, vector<vector<int> >& adj)

{

 // Queue for the BFS

 queue<int> q;

 // pushing the root

 q.push(Root);

 // visit array to keep track of nodes that have been

 // visited

 int vis[adj.size()] = { 0 };

 // BFS

 while (!q.empty()) {

 int node = q.front();

 q.pop();

 vis[node] = 1;

 cout << node << "-> ";

478

 for (auto cur : adj[node])

 if (vis[cur] == 0) {

 cout << cur << " ";

 q.push(cur);

 }

 cout << endl;

 }

}

// Function to print the leaf nodes

void printLeafNodes(int Root, vector<vector<int> >& adj)

{

 // Leaf nodes have only one edge and are not the root

 for (int i = 1; i < adj.size(); i++)

 if (adj[i].size() == 1 && i != Root)

 cout << i << " ";

 cout << endl;

}

// Function to print the degrees of each node

void printDegrees(int Root, vector<vector<int> >& adj)

{

479

 for (int i = 1; i < adj.size(); i++) {

 cout << i << ": ";

 // Root has no parent, thus, its degree is equal to

 // the edges it is connected to

 if (i == Root)

 cout << adj[i].size() << endl;

 else

 cout << adj[i].size() - 1 << endl;

 }

}

// Driver code

int main()

{

 // Number of nodes

 int N = 7, Root = 1;

 // Adjacency list to store the tree

 vector<vector<int> > adj(N + 1, vector<int>());

 // Creating the tree

 addEdge(1, 2, adj);

 addEdge(1, 3, adj);

480

 addEdge(1, 4, adj);

 addEdge(2, 5, adj);

 addEdge(2, 6, adj);

 addEdge(4, 7, adj);

 // Printing the parents of each node

 cout << "The parents of each node are:" << endl;

 printParents(Root, adj, 0);

 // Printing the children of each node

 cout << "The children of each node are:" << endl;

 printChildren(Root, adj);

 // Printing the leaf nodes in the tree

 cout << "The leaf nodes of the tree are:" << endl;

 printLeafNodes(Root, adj);

 // Printing the degrees of each node

 cout << "The degrees of each node are:" << endl;

 printDegrees(Root, adj);

481

 return 0;

}

482

Output

The parents of each node are:

1->Root

2->1

5->2

6->2

3->1

4->1

7->4

The children of each node are:

1-> 2 3 4

2-> 5 6

3->

4-> 7

5->

6->

7->

The leaf nodes of the tree are:

3 5 6 7

The degrees of each node are:

1: 3

