
470

Trees:

Basic Tree Terminologies:

What is a Tree data structure?

A tree is non-linear and a hierarchical data structure

consisting of a collection of nodes such that each node of the

tree stores a value and a list of references to other nodes (the

“children”).

This data structure is a specialized method to organize and

store data in the computer to be used more effectively. It

consists of a central node, structural nodes, and sub-nodes,

which are connected via edges. We can also say that tree data

structure has roots, branches, and leaves connected with one

another.

Recursive Definition:

A tree consists of a root, and zero or more subtrees T1, T2, …

, Tk such that there is an edge from the root of the tree to the

root of each subtree.

471

Why Tree is considered a non-linear data structure?

The data in a tree are not stored in a sequential manner i.e,

they are not stored linearly. Instead, they are arranged on

multiple levels or we can say it is a hierarchical structure. For

this reason, the tree is considered to be a non-linear data

structure.

Basic Terminologies In Tree Data Structure:

 Parent Node: The node which is a predecessor of a

node is called the parent node of that node. {2} is the

parent node of {6, 7}.

 Child Node: The node which is the immediate

successor of a node is called the child node of that

node. Examples: {6, 7} are the child nodes of {2}.

 Root Node: The topmost node of a tree or the node

which does not have any parent node is called the root

node. {1} is the root node of the tree. A non-empty

tree must contain exactly one root node and exactly

one path from the root to all other nodes of the tree.

 Leaf Node or External Node: The nodes which do

not have any child nodes are called leaf nodes. {6, 14,

8, 9, 15, 16, 4, 11, 12, 17, 18, 19} are the leaf nodes of

the tree.

472

 Ancestor of a Node: Any predecessor nodes on the

path of the root to that node are called Ancestors of

that node. {1, 2} are the ancestor nodes of the node {7}

 Descendant: Any successor node on the path from the

leaf node to that node. {7, 14} are the descendants of

the node. {2}.

 Sibling: Children of the same parent node are called

siblings. {8, 9, 10} are called siblings.

 Level of a node: The count of edges on the path from

the root node to that node. The root node has level 0.

 Internal node: A node with at least one child is called

Internal Node.

 Neighbour of a Node: Parent or child nodes of that

node are called neighbors of that node.

 Subtree: Any node of the tree along with its

descendant.

Properties of a Tree:

 Number of edges: An edge can be defined as the

connection between two nodes. If a tree has N nodes

then it will have (N-1) edges. There is only one path

from each node to any other node of the tree.

 Depth of a node: The depth of a node is defined as the

length of the path from the root to that node. Each

edge adds 1 unit of length to the path. So, it can also

be defined as the number of edges in the path from the

root of the tree to the node.

 Height of a node: The height of a node can be defined

as the length of the longest path from the node to a leaf

node of the tree.

473

 Height of the Tree: The height of a tree is the length

of the longest path from the root of the tree to a leaf

node of the tree.

 Degree of a Node: The total count of subtrees

attached to that node is called the degree of the node.

The degree of a leaf node must be 0. The degree of a

tree is the maximum degree of a node among all the

nodes in the tree.

Some more properties are:

 Traversing in a tree is done by depth first search and

breadth first search algorithm.

 It has no loop and no circuit

 It has no self-loop

 Its hierarchical model.

Syntax:

struct Node

{

 int data;

 struct Node *left_child;

 struct Node *right_child;

};

474

Basic Operation Of Tree:

Create – create a tree in data structure.

Insert − Inserts data in a tree.

Search − Searches specific data in a tree to check it is

present or not.

Preorder Traversal – perform Traveling a tree in a pre-order

manner in data structure .

In order Traversal – perform Traveling a tree in an in-order

manner.

Post order Traversal –perform Traveling a tree in a post-

order manner.

Example of Tree data structure

Here,

Node A is the root node

B is the parent of D and E

D and E are the siblings

475

D, E, F and G are the leaf nodes

A and B are the ancestors of E

Few examples on Tree Data Structure: A code to

demonstrate few of the above terminologies has been

described below:

476

// C++ program to demonstrate some of the above

// terminologies

#include <bits/stdc++.h>

using namespace std;

// Function to add an edge between vertices x and y

void addEdge(int x, int y, vector<vector<int> >& adj)

{

 adj[x].push_back(y);

 adj[y].push_back(x);

}

// Function to print the parent of each node

void printParents(int node, vector<vector<int> >& adj,

 int parent)

{

 // current node is Root, thus, has no parent

 if (parent == 0)

 cout << node << "->Root" << endl;

 else

 cout << node << "->" << parent << endl;

 // Using DFS

477

 for (auto cur : adj[node])

 if (cur != parent)

 printParents(cur, adj, node);

}

// Function to print the children of each node

void printChildren(int Root, vector<vector<int> >& adj)

{

 // Queue for the BFS

 queue<int> q;

 // pushing the root

 q.push(Root);

 // visit array to keep track of nodes that have been

 // visited

 int vis[adj.size()] = { 0 };

 // BFS

 while (!q.empty()) {

 int node = q.front();

 q.pop();

 vis[node] = 1;

 cout << node << "-> ";

478

 for (auto cur : adj[node])

 if (vis[cur] == 0) {

 cout << cur << " ";

 q.push(cur);

 }

 cout << endl;

 }

}

// Function to print the leaf nodes

void printLeafNodes(int Root, vector<vector<int> >& adj)

{

 // Leaf nodes have only one edge and are not the root

 for (int i = 1; i < adj.size(); i++)

 if (adj[i].size() == 1 && i != Root)

 cout << i << " ";

 cout << endl;

}

// Function to print the degrees of each node

void printDegrees(int Root, vector<vector<int> >& adj)

{

479

 for (int i = 1; i < adj.size(); i++) {

 cout << i << ": ";

 // Root has no parent, thus, its degree is equal to

 // the edges it is connected to

 if (i == Root)

 cout << adj[i].size() << endl;

 else

 cout << adj[i].size() - 1 << endl;

 }

}

// Driver code

int main()

{

 // Number of nodes

 int N = 7, Root = 1;

 // Adjacency list to store the tree

 vector<vector<int> > adj(N + 1, vector<int>());

 // Creating the tree

 addEdge(1, 2, adj);

 addEdge(1, 3, adj);

480

 addEdge(1, 4, adj);

 addEdge(2, 5, adj);

 addEdge(2, 6, adj);

 addEdge(4, 7, adj);

 // Printing the parents of each node

 cout << "The parents of each node are:" << endl;

 printParents(Root, adj, 0);

 // Printing the children of each node

 cout << "The children of each node are:" << endl;

 printChildren(Root, adj);

 // Printing the leaf nodes in the tree

 cout << "The leaf nodes of the tree are:" << endl;

 printLeafNodes(Root, adj);

 // Printing the degrees of each node

 cout << "The degrees of each node are:" << endl;

 printDegrees(Root, adj);

481

 return 0;

}

482

Output

The parents of each node are:

1->Root

2->1

5->2

6->2

3->1

4->1

7->4

The children of each node are:

1-> 2 3 4

2-> 5 6

3->

4-> 7

5->

6->

7->

The leaf nodes of the tree are:

3 5 6 7

The degrees of each node are:

1: 3

