
407

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }

 //point last to new last node

 last = link;

}

Circular Linked Lists: all operations their

algorithms and the complexity analysis:

What is Circular linked list?

The circular linked list is a linked list where all nodes are

connected to form a circle. In a circular linked list, the first

node and the last node are connected to each other which forms

a circle. There is no NULL at the end.

408

There are generally two types of circular linked lists:

 Circular singly linked list: In a circular Singly linked

list, the last node of the list contains a pointer to the first

node of the list. We traverse the circular singly linked

list until we reach the same node where we started. The

circular singly linked list has no beginning or end. No

null value is present in the next part of any of the nodes.

Representation of Circular singly linked list

 Circular Doubly linked list: Circular Doubly Linked

List has properties of both doubly linked list and

circular linked list in which two consecutive elements

are linked or connected by the previous and next pointer

and the last node points to the first node by the next

pointer and also the first node points to the last node by

the previous pointer.

409

Representation of circular doubly linked list

Note: We will be using the singly circular linked list to

represent the working of the circular linked list.

Representation of circular linked list:

Circular linked lists are similar to single Linked Lists with the

exception of connecting the last node to the first node.

Node representation of a Circular Linked List:

 C++

// Class Node, similar to the linked list

class Node{

 int value;

 // Points to the next node.

 Node next;

}

Example of Circular singly linked list:

410

Example of circular linked list

The above Circular singly linked list can be represented as:

 C++

// Initialize the Nodes.

Node one = new Node(3);

Node two = new Node(5);

Node three = new Node(9);

// Connect nodes

one.next = two;

two.next = three;

three.next = one;

Explanation: In the above program one, two, and three are the

node with values 3, 5, and 9 respectively which are connected

in a circular manner as:

 For Node One: The Next pointer stores the address of

Node two.

411

 For Node Two: The Next stores the address of Node

three

 For Node Three: The Next points to node one.

Operations on the circular linked list:

We can do some operations on the circular linked list similar to

the singly linked list which are:

1. Insertion

2. Deletion

1. Insertion in the circular linked list:

A node can be added in three ways:

1. Insertion at the beginning of the list

2. Insertion at the end of the list

3. Insertion in between the nodes

1) Insertion at the beginning of the list: To insert a node at

the beginning of the list, follow these steps:

 Create a node, say T.

 Make T -> next = last -> next.

 last -> next = T.

412

Circular linked list before insertion

And then,

Circular linked list after insertion

Below is the code implementation to insert a node at the

beginning of the list:

 C++

413

struct Node *addBegin(struct Node *last, int data)

{

if (last == NULL)

 return addToEmpty(last, data);

// Creating a node dynamically.

struct Node *temp

 = (struct Node *)malloc(sizeof(struct Node));

// Assigning the data.

temp -> data = data;

// Adjusting the links.

temp -> next = last -> next;

last -> next = temp;

return last;

}

Time complexity: O(1) to insert a node at the beginning no

need to traverse list it takes constant time

Auxiliary Space: O(1)

414

2) Insertion at the end of the list: To insert a node at the end

of the list, follow these steps:

 Create a node, say T.

 Make T -> next = last -> next;

 last -> next = T.

 last = T.

Before insertion,

Circular linked list before insertion of node at the end

After insertion,

Circular linked list after insertion of node at the end

Below is the code implementation to insert a node at the

beginning of the list:

415

 C++

struct Node *addEnd(struct Node *last, int data)

{

if (last == NULL)

 return addToEmpty(last, data);

// Creating a node dynamically.

struct Node *temp =

 (struct Node *)malloc(sizeof(struct Node));

// Assigning the data.

temp -> data = data;

// Adjusting the links.

temp -> next = last -> next;

last -> next = temp;

last = temp;

return last;

416

}

Time Complexity: O(1) to insert a node at the end of the list.

No need to traverse the list as we are utilizing the last pointer,

hence it takes constant time.

Auxiliary Space: O(1)

3) Insertion in between the nodes: To insert a node in between

the two nodes, follow these steps:

 Create a node, say T.

 Search for the node after which T needs to be inserted,

say that node is P.

 Make T -> next = P -> next;

 P -> next = T.

Suppose 12 needs to be inserted after the node has the value 10,

417

Circular linked list before insertion

After searching and insertion,

Circular linked list after insertion

Below is the code to insert a node at the specified position of

the List:

 C++

418

struct Node *addAfter(struct Node *last, int data, int item)

{

 if (last == NULL)

 return NULL;

 struct Node *temp, *p;

 p = last -> next;

 // Searching the item.

 do

 {

 if (p ->data == item)

 {

 // Creating a node dynamically.

 temp = (struct Node *)malloc(sizeof(struct Node));

 // Assigning the data.

 temp -> data = data;

 // Adjusting the links.

419

 temp -> next = p -> next;

 // Adding newly allocated node after p.

 p -> next = temp;

 // Checking for the last node.

 if (p == last)

 last = temp;

 return last;

 }

 p = p -> next;

 } while (p != last -> next);

 cout << item << " not present in the list." << endl;

 return last;

}

Time Complexity: O(N)

Auxiliary Space: O(1)

2. Deletion in a circular linked list:

1) Delete the node only if it is the only node in the circular

linked list:

420

 Free the node’s memory

 The last value should be NULL A node always points

to another node, so NULL assignment is not necessary.

Any node can be set as the starting point.

Nodes are traversed quickly from the first to the last.

2) Deletion of the last node:

 Locate the node before the last node (let it be temp)

 Keep the address of the node next to the last node in

temp

 Delete the last memory

 Put temp at the end

3) Delete any node from the circular linked list: We will be

given a node and our task is to delete that node from the circular

linked list.

Algorithm:
Case 1: List is empty.

 If the list is empty we will simply return.

Case 2:List is not empty

 If the list is not empty then we define two pointers curr

and prev and initialize the pointer curr with the head

node.

 Traverse the list using curr to find the node to be

deleted and before moving to curr to the next node,

every time set prev = curr.

 If the node is found, check if it is the only node in the

list. If yes, set head = NULL and free(curr).

421

 If the list has more than one node, check if it is the first

node of the list. Condition to check this(curr == head).

If yes, then move prev until it reaches the last node.

After prev reaches the last node, set head = head -> next

and prev -> next = head. Delete curr.

 If curr is not the first node, we check if it is the last node

in the list. Condition to check this is (curr -> next ==

head).

 If curr is the last node. Set prev -> next = head and

delete the node curr by free(curr).

 If the node to be deleted is neither the first node nor the

last node, then set prev -> next = curr -> next and delete

curr.

Below is the implementation for the above approach:

 C++

422

// C++ program to delete a given key from

// linked list.

#include <bits/stdc++.h>

using namespace std;

// Structure for a node

class Node {

public:

 int data;

 Node* next;

};

// Function to insert a node at the

// beginning of a Circular linked list

void push(Node** head_ref, int data)

{

 // Create a new node and make head

 // as next of it.

 Node* ptr1 = new Node();

423

 ptr1->data = data;

 ptr1->next = *head_ref;

 // If linked list is not NULL then

 // set the next of last node

 if (*head_ref != NULL) {

 // Find the node before head and

 // update next of it.

 Node* temp = *head_ref;

 while (temp->next != *head_ref)

 temp = temp->next;

 temp->next = ptr1;

 }

 else

 // For the first node

 ptr1->next = ptr1;

 *head_ref = ptr1;

424

}

// Function to print nodes in a given

// circular linked list

void printList(Node* head)

{

 Node* temp = head;

 if (head != NULL) {

 do {

 cout << temp->data << " ";

 temp = temp->next;

 } while (temp != head);

 }

 cout << endl;

}

// Function to delete a given node

// from the list

void deleteNode(Node** head, int key)

425

{

 // If linked list is empty

 if (*head == NULL)

 return;

 // If the list contains only a

 // single node

 if ((*head)->data == key && (*head)->next == *head) {

 free(*head);

 *head = NULL;

 return;

 }

 Node *last = *head, *d;

 // If head is to be deleted

 if ((*head)->data == key) {

 // Find the last node of the list

426

 while (last->next != *head)

 last = last->next;

 // Point last node to the next of

 // head i.e. the second node

 // of the list

 last->next = (*head)->next;

 free(*head);

 *head = last->next;

 return;

 }

 // Either the node to be deleted is

 // not found or the end of list

 // is not reached

 while (last->next != *head && last->next->data != key) {

 last = last->next;

 }

 // If node to be deleted was found

427

 if (last->next->data == key) {

 d = last->next;

 last->next = d->next;

 free(d);

 }

 else

 cout << "no such keyfound";

}

// Driver code

int main()

{

 // Initialize lists as empty

 Node* head = NULL;

 // Created linked list will be

 // 2->5->7->8->10

 push(&head, 2);

 push(&head, 5);

 push(&head, 7);

428

 push(&head, 8);

 push(&head, 10);

 cout << "List Before Deletion: ";

 printList(head);

 deleteNode(&head, 7);

 cout << "List After Deletion: ";

 printList(head);

 return 0;

}

429

Output

List Before Deletion: 10 8 7 5 2

List After Deletion: 10 8 5 2

Time Complexity: O(N), Worst case occurs when the element

to be deleted is the last element and we need to move through

the whole list.

Auxiliary Space: O(1), As constant extra space is used.

Advantages of Circular Linked Lists:

 Any node can be a starting point. We can traverse the

whole list by starting from any point. We just need to

stop when the first visited node is visited again.

 Useful for implementation of a queue. Unlike this

implementation, we don’t need to maintain two pointers

for front and rear if we use a circular linked list. We can

maintain a pointer to the last inserted node and the front

can always be obtained as next of last.

 Circular lists are useful in applications to repeatedly go

around the list. For example, when multiple

applications are running on a PC, it is common for the

operating system to put the running applications on a

list and then cycle through them, giving each of them a

slice of time to execute, and then making them wait

while the CPU is given to another application. It is

convenient for the operating system to use a circular list

so that when it reaches the end of the list it can cycle

around to the front of the list.

 Circular Doubly Linked Lists are used for the

implementation of advanced data structures like the

Fibonacci Heap.

430

Disadvantages of circular linked list:

 Compared to singly linked lists, circular lists are more

complex.

 Reversing a circular list is more complicated than singly

or doubly reversing a circular list.

 It is possible for the code to go into an infinite loop if it

is not handled carefully.

 It is harder to find the end of the list and control the

loop.

Applications of circular linked lists:

 Multiplayer games use this to give each player a chance

to play.

 A circular linked list can be used to organize multiple

running applications on an operating system. These

applications are iterated over by the OS.

Why circular linked list?

 A node always points to another node, so NULL

assignment is not necessary.

 Any node can be set as the starting point.

 Nodes are traversed quickly from the first to the last.

Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains

a pointer to the first node of the list. We can have circular singly

linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same

node where we started. The circular singly liked list has no

beginning and no ending. There is no null value present in the

next part of any of the nodes.

431

The following image shows a circular singly linked list.

Circular linked list are mostly used in task maintenance in

operating systems. There are many examples where circular

linked list are being used in computer science including

browser surfing where a record of pages visited in the past by

the user, is maintained in the form of circular linked lists and

can be accessed again on clicking the previous button.

Memory Representation of circular linked list:

In the following image, memory representation of a circular

linked list containing marks of a student in 4 subjects.

However, the image shows a glimpse of how the circular list is

being stored in the memory. The start or head of the list is

pointing to the element with the index 1 and containing 13

marks in the data part and 4 in the next part. Which means that

it is linked with the node that is being stored at 4th index of the

list.

However, due to the fact that we are considering circular linked

list in the memory therefore the last node of the list contains the

address of the first node of the list.

432

We can also have more than one number of linked list in the

memory with the different start pointers pointing to the

different start nodes in the list. The last node is identified by its

next part which contains the address of the start node of the list.

We must be able to identify the last node of any linked list so

that we can find out the number of iterations which need to be

performed while traversing the list.

Operations on Circular Singly linked list:

Insertion

SN Operation Description

433

1 Insertion at

beginning

Adding a node into circular singly

linked list at the beginning.

2 Insertion at the

end

Adding a node into circular singly

linked list at the end.

Deletion & Traversing

SN Operation Description

1 Deletion at

beginning

Removing the node from circular singly

linked list at the beginning.

2 Deletion at

the end

Removing the node from circular singly

linked list at the end.

3 Searching Compare each element of the node with

the given item and return the location at

434

which the item is present in the list

otherwise return null.

4 Traversing Visiting each element of the list at least

once in order to perform some specific

operation.

Menu-driven program in C implementing all operations

on circular singly linked list

1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

5. int data;

6. struct node *next;

7. };

8. struct node *head;

9.
10. void beginsert ();

11. void lastinsert ();

12. void randominsert();

13. void begin_delete();

14. void last_delete();

15. void random_delete();

16. void display();

17. void search();

435

18. void main ()

19. {

20. int choice =0;

21. while(choice != 7)

22. {

23. printf("\n*********Main

Menu*********\n");

24. printf("\nChoose one option from the following

list ...\n");

25. printf("\n===========================

====================\n");

26. printf("\n1.Insert in begining\n2.Insert at

last\n3.Delete from Beginning\n4.Delete from

last\n5.Search for an element\n6.Show\n7.Exit\n");

27. printf("\nEnter your choice?\n");

28. scanf("\n%d",&choice);

29. switch(choice)

30. {

31. case 1:

32. beginsert();

33. break;

34. case 2:

35. lastinsert();

36. break;

37. case 3:

38. begin_delete();

39. break;

40. case 4:

41. last_delete();

42. break;

43. case 5:

44. search();

45. break;

436

46. case 6:

47. display();

48. break;

49. case 7:

50. exit(0);

51. break;

52. default:

53. printf("Please enter valid choice..");

54. }

55. }

56. }

57. void beginsert()

58. {

59. struct node *ptr,*temp;

60. int item;

61. ptr = (struct node *)malloc(sizeof(struct node));

62. if(ptr == NULL)

63. {

64. printf("\nOVERFLOW");

65. }

66. else

67. {

68. printf("\nEnter the node data?");

69. scanf("%d",&item);

70. ptr -> data = item;

71. if(head == NULL)

72. {

73. head = ptr;

74. ptr -> next = head;

75. }

76. else

77. {

78. temp = head;

437

79. while(temp->next != head)

80. temp = temp->next;

81. ptr->next = head;

82. temp -> next = ptr;

83. head = ptr;

84. }

85. printf("\nnode inserted\n");

86. }

87.

88. }

89. void lastinsert()

90. {

91. struct node *ptr,*temp;

92. int item;

93. ptr = (struct node *)malloc(sizeof(struct node));

94. if(ptr == NULL)

95. {

96. printf("\nOVERFLOW\n");

97. }

98. else

99. {

100. printf("\nEnter Data?");

101. scanf("%d",&item);

102. ptr->data = item;

103. if(head == NULL)

104. {

105. head = ptr;

106. ptr -> next = head;

107. }

108. else

109. {

110. temp = head;

111. while(temp -> next != head)

438

112. {

113. temp = temp -> next;

114. }

115. temp -> next = ptr;

116. ptr -> next = head;

117. }

118.

119. printf("\nnode inserted\n");

120. }

121.

122. }

123.

124. void begin_delete()

125. {

126. struct node *ptr;

127. if(head == NULL)

128. {

129. printf("\nUNDERFLOW");

130. }

131. else if(head->next == head)

132. {

133. head = NULL;

134. free(head);

135. printf("\nnode deleted\n");

136. }

137.

138. else

139. { ptr = head;

140. while(ptr -> next != head)

141. ptr = ptr -> next;

142. ptr->next = head->next;

143. free(head);

144. head = ptr->next;

439

145. printf("\nnode deleted\n");

146.

147. }

148. }

149. void last_delete()

150. {

151. struct node *ptr, *preptr;

152. if(head==NULL)

153. {

154. printf("\nUNDERFLOW");

155. }

156. else if (head ->next == head)

157. {

158. head = NULL;

159. free(head);

160. printf("\nnode deleted\n");

161.

162. }

163. else

164. {

165. ptr = head;

166. while(ptr ->next != head)

167. {

168. preptr=ptr;

169. ptr = ptr->next;

170. }

171. preptr->next = ptr -> next;

172. free(ptr);

173. printf("\nnode deleted\n");

174.

175. }

176. }

177.

440

178. void search()

179. {

180. struct node *ptr;

181. int item,i=0,flag=1;

182. ptr = head;

183. if(ptr == NULL)

184. {

185. printf("\nEmpty List\n");

186. }

187. else

188. {

189. printf("\nEnter item which you want to

search?\n");

190. scanf("%d",&item);

191. if(head ->data == item)

192. {

193. printf("item found at location %d",i+1);

194. flag=0;

195. }

196. else

197. {

198. while (ptr->next != head)

199. {

200. if(ptr->data == item)

201. {

202. printf("item found at location %d ",i+1);

203. flag=0;

204. break;

205. }

206. else

207. {

208. flag=1;

209. }

441

210. i++;

211. ptr = ptr -> next;

212. }

213. }

214. if(flag != 0)

215. {

216. printf("Item not found\n");

217. }

218. }

219.

220. }

221.

222. void display()

223. {

224. struct node *ptr;

225. ptr=head;

226. if(head == NULL)

227. {

228. printf("\nnothing to print");

229. }

230. else

231. {

232. printf("\n printing values ... \n");

233.

234. while(ptr -> next != head)

235. {

236.

237. printf("%d\n", ptr -> data);

238. ptr = ptr -> next;

239. }

240. printf("%d\n", ptr -> data);

241. }

242.

442

243. }

Output:

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

1

Enter the node data?10

443

node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

2

444

Enter Data?20

node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

2

445

Enter Data?30

node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

446

3

node deleted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

4

447

node deleted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

5

448

Enter item which you want to search?

20

item found at location 1

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

6

449

 printing values ...

20

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

7

450

Circular Doubly Linked List

Circular doubly linked list is a more complexed type of data

structure in which a node contain pointers to its previous node

as well as the next node. Circular doubly linked list doesn't

contain NULL in any of the node. The last node of the list

contains the address of the first node of the list. The first node

of the list also contain address of the last node in its previous

pointer.

A circular doubly linked list is shown in the following figure.

Due to the fact that a circular doubly linked list contains three

parts in its structure therefore, it demands more space per node

and more expensive basic operations. However, a circular

doubly linked list provides easy manipulation of the pointers

and the searching becomes twice as efficient.

Memory Management of Circular Doubly linked list

The following figure shows the way in which the memory is

allocated for a circular doubly linked list. The variable head

contains the address of the first element of the list i.e. 1 hence

the starting node of the list contains data A is stored at address

1. Since, each node of the list is supposed to have three parts

therefore, the starting node of the list contains address of the

last node i.e. 8 and the next node i.e. 4. The last node of the list

that is stored at address 8 and containing data as 6, contains

address of the first node of the list as shown in the image i.e. 1.

451

In circular doubly linked list, the last node is identified by the

address of the first node which is stored in the next part of the

last node therefore the node which contains the address of the

first node, is actually the last node of the list.

Operations on circular doubly linked list :

There are various operations which can be performed on

circular doubly linked list. The node structure of a circular

doubly linked list is similar to doubly linked list. However, the

operations on circular doubly linked list is described in the

following table.

SN Operation Description

452

1 Insertion at

beginning

Adding a node in circular doubly

linked list at the beginning.

2 Insertion at end Adding a node in circular doubly

linked list at the end.

3 Deletion at

beginning

Removing a node in circular doubly

linked list from beginning.

4 Deletion at end Removing a node in circular doubly

linked list at the end.

Traversing and searching in circular doubly linked list is similar

to that in the circular singly linked list.

C program to implement all the operations on circular doubly

linked list

1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

5. struct node *prev;

453

6. struct node *next;

7. int data;

8. };

9. struct node *head;

10. void insertion_beginning();

11. void insertion_last();

12. void deletion_beginning();

13. void deletion_last();

14. void display();

15. void search();

16. void main ()

17. {

18. int choice =0;

19. while(choice != 9)

20. {

21. printf("\n*********Main

Menu*********\n");

22. printf("\nChoose one option from the following

list ...\n");

23. printf("\n===========================

====================\n");

24. printf("\n1.Insert in Beginning\n2.Insert at

last\n3.Delete from Beginning\n4.Delete from

last\n5.Search\n6.Show\n7.Exit\n");

25. printf("\nEnter your choice?\n");

26. scanf("\n%d",&choice);

27. switch(choice)

28. {

29. case 1:

30. insertion_beginning();

31. break;

32. case 2:

33. insertion_last();

454

34. break;

35. case 3:

36. deletion_beginning();

37. break;

38. case 4:

39. deletion_last();

40. break;

41. case 5:

42. search();

43. break;

44. case 6:

45. display();

46. break;

47. case 7:

48. exit(0);

49. break;

50. default:

51. printf("Please enter valid choice..");

52. }

53. }

54. }

55. void insertion_beginning()

56. {

57. struct node *ptr,*temp;

58. int item;

59. ptr = (struct node *)malloc(sizeof(struct node));

60. if(ptr == NULL)

61. {

62. printf("\nOVERFLOW");

63. }

64. else

65. {

66. printf("\nEnter Item value");

455

67. scanf("%d",&item);

68. ptr->data=item;

69. if(head==NULL)

70. {

71. head = ptr;

72. ptr -> next = head;

73. ptr -> prev = head;

74. }

75. else

76. {

77. temp = head;

78. while(temp -> next != head)

79. {

80. temp = temp -> next;

81. }

82. temp -> next = ptr;

83. ptr -> prev = temp;

84. head -> prev = ptr;

85. ptr -> next = head;

86. head = ptr;

87. }

88. printf("\nNode inserted\n");

89. }

90.

91. }

92. void insertion_last()

93. {

94. struct node *ptr,*temp;

95. int item;

96. ptr = (struct node *) malloc(sizeof(struct node));

97. if(ptr == NULL)

98. {

99. printf("\nOVERFLOW");

456

100. }

101. else

102. {

103. printf("\nEnter value");

104. scanf("%d",&item);

105. ptr->data=item;

106. if(head == NULL)

107. {

108. head = ptr;

109. ptr -> next = head;

110. ptr -> prev = head;

111. }

112. else

113. {

114. temp = head;

115. while(temp->next !=head)

116. {

117. temp = temp->next;

118. }

119. temp->next = ptr;

120. ptr ->prev=temp;

121. head -> prev = ptr;

122. ptr -> next = head;

123. }

124. }

125. printf("\nnode inserted\n");

126. }

127.

128. void deletion_beginning()

129. {

130. struct node *temp;

131. if(head == NULL)

132. {

457

133. printf("\n UNDERFLOW");

134. }

135. else if(head->next == head)

136. {

137. head = NULL;

138. free(head);

139. printf("\nnode deleted\n");

140. }

141. else

142. {

143. temp = head;

144. while(temp -> next != head)

145. {

146. temp = temp -> next;

147. }

148. temp -> next = head -> next;

149. head -> next -> prev = temp;

150. free(head);

151. head = temp -> next;

152. }

153.

154. }

155. void deletion_last()

156. {

157. struct node *ptr;

158. if(head == NULL)

159. {

160. printf("\n UNDERFLOW");

161. }

162. else if(head->next == head)

163. {

164. head = NULL;

165. free(head);

458

166. printf("\nnode deleted\n");

167. }

168. else

169. {

170. ptr = head;

171. if(ptr->next != head)

172. {

173. ptr = ptr -> next;

174. }

175. ptr -> prev -> next = head;

176. head -> prev = ptr -> prev;

177. free(ptr);

178. printf("\nnode deleted\n");

179. }

180. }

181.

182. void display()

183. {

184. struct node *ptr;

185. ptr=head;

186. if(head == NULL)

187. {

188. printf("\nnothing to print");

189. }

190. else

191. {

192. printf("\n printing values ... \n");

193.

194. while(ptr -> next != head)

195. {

196.

197. printf("%d\n", ptr -> data);

198. ptr = ptr -> next;

459

199. }

200. printf("%d\n", ptr -> data);

201. }

202.

203. }

204.

205. void search()

206. {

207. struct node *ptr;

208. int item,i=0,flag=1;

209. ptr = head;

210. if(ptr == NULL)

211. {

212. printf("\nEmpty List\n");

213. }

214. else

215. {

216. printf("\nEnter item which you want to

search?\n");

217. scanf("%d",&item);

218. if(head ->data == item)

219. {

220. printf("item found at location %d",i+1);

221. flag=0;

222. }

223. else

224. {

225. while (ptr->next != head)

226. {

227. if(ptr->data == item)

228. {

229. printf("item found at location %d ",i+1);

230. flag=0;

460

231. break;

232. }

233. else

234. {

235. flag=1;

236. }

237. i++;

238. ptr = ptr -> next;

239. }

240. }

241. if(flag != 0)

242. {

243. printf("Item not found\n");

244. }

245. }

246.

247. }

Output:

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in Beginning

2.Insert at last

461

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

1

Enter Item value123

Node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in Beginning

462

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

2

Enter value234

node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

463

1.Insert in Beginning

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

1

Enter Item value90

Node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

464

1.Insert in Beginning

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

2

Enter value80

node inserted

*********Main Menu*********

Choose one option from the following list ...

465

==

===

1.Insert in Beginning

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

3

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in Beginning

466

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

4

node deleted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in Beginning

2.Insert at last

467

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

6

 printing values ...

123

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in Beginning

2.Insert at last

468

3.Delete from Beginning

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

5

Enter item which you want to search?

123

item found at location 1

*********Main Menu*********

Choose one option from the following list ...

==

1.Insert in Beginning

2.Insert at last

3.Delete from Beginning

469

4.Delete from last

5.Search

6.Show

7.Exit

Enter your choice?

7

