Resulting Polynomial

Doubly linked list: operations on it and algorithmic
analysis:

Doubly linked list is a complex type of linked list in which a
node contains a pointer to the previous as well as the next node
in the sequence. Therefore, in a doubly linked list, a node
consists of three parts: node data, pointer to the next node in
sequence (next pointer) , pointer to the previous node (previous
pointer). A sample node in a doubly linked list is shown in the

figure.

head

L' Prev Data

Node

375

A doubly linked list containing three nodes having numbers
from 1 to 3 in their data part, is shown in the following image.

Doubly Linked List
In C, structure of a node in doubly linked list can be given as :

1. struct node

2.{

3. struct node *prev;,
4. intdata;

5. struct node *next;

6.}

The prev part of the first node and the next part of the last node
will always contain null indicating end in each direction.

45.3M

883
How to find Nth Highest Salary in SQL

In a singly linked list, we could traverse only in one direction,
because each node contains address of the next node and it
doesn't have any record of its previous nodes. However, doubly
linked list overcome this limitation of singly linked list. Due to
the fact that, each node of the list contains the address of its
previous node, we can find all the details about the previous
node as well by using the previous address stored inside the
previous part of each node.

376

Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the
following image. Generally, doubly linked list consumes more
space for every node and therefore, causes more expansive
basic operations such as insertion and deletion. However, we
can easily manipulate the elements of the list since the list
maintains pointers in both the directions (forward and
backward).

In the following image, the first element of the list that is i.e.
13 stored at address 1. The head pointer points to the starting
address 1. Since this is the first element being added to the list
therefore the prev of the list contains null. The next node of
the list resides at address 4 therefore the first node contains 4
In its next pointer.

We can traverse the list in this way until we find any node
containing null or -1 in its next part.

Memory Representation of a Doubly linked list

Operations on doubly linked list
Node Creation

1. struct node

2.{

3. struct node *prev;,
4. intdata;

5. struct node *next;

6. };

7. struct node *head:

All the remaining operations regarding doubly linked list are
described in the following table.

SN Operation Description

Insertion at Adding the node into the linked list

beginning at beginning.

Insertion atend Adding the node into the linked list

to the end.

Insertion after Adding the node into the linked list

specified node after the specified node.

Deletion at Removing the node from beginning

beginning of the list

Deletion at the Removing the node from end of the

end list.

Deletion of the Removing the node which is present

node having just after the node containing the

given data given data.

Searching Comparing each node data with the

item to be searched and return the
location of the item in the list if the

item found else return null.

Traversing Visiting each node of the list at least

once in order to perform some
specific operation like searching,

sorting, display, etc.

Menu Driven Program in C to implement all the operations of
doubly linked list

1. #include<stdio.h>
2. #include<stdlib.h>
3. struct node

4. {

5. struct node *prev;
6. struct node *next;
7. intdata;

8. };

9. struct node *head,;
void insertion_beginning();
void insertion_last();
void insertion_specified();
void deletion_beginning();
void deletion_last();
void deletion_specified();
void display();
void search();
void main ()
{
int choice =0;

while(choice 1= 9)

{

printf("\n*****EEX*NMain
M en u*********\n ! ') ’

printf("\nChoose one option from the following
list ...\n");

printf("\nl.Insert in begining\n2.Insert at

last\n3.Insert at any random location\n4.Delete from
Beginning\n

217. 5.Delete from last\n6.Delete the node after the
given data\n7.Search\n8.Show\n9.Exit\n");

28. printf("\nEnter your choice?\n");

29. scanf("\n%d",&choice);

30. switch(choice)

31. {

case 1:

Insertion_beginning();

break;

case 2:
insertion_last();

break;

case 3:

Insertion_specified();

break;

case 4:

deletion_beginning();

break;

case 5:

deletion_last();

break;

case 6:

deletion_specified();

break;

case 7:

search();

break;

case 8:

display();

break;

case 9:

exit(0);

break;

default:

printf("Please enter valid choice..");

}
}
}

void insertion_beginning()

65.
66.
67.
68.
69.
70,
71,
72,
73.
74,
75,
/6.
77,
/8.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

94,
95.
96.

struct node *ptr;

Int item:;

ptr = (struct node *)malloc(sizeof(struct node));
If(ptr == NULL)

{

}

else

{

printf("\nEnter Item value");
scanf('%d",&item);

printf(""\nOVERFLOW");

If(head==NULL)

{
ptr->next = NULL,;
ptr->prev=NULL,;
ptr->data=item;
head=ptr;

ks

else

{
ptr->data=item;
ptr->prev=NULL,;
ptr->next = head;
head->prev=ptr;
head=ptr;

}
printf("\nNode inserted\n");

}

}

void insertion_last()

struct node *ptr,*temp;

int item;

ptr = (struct node *) malloc(sizeof(struct node));
If(ptr == NULL)

{

}

else

{
printf("\nEnter value");
scanf('%d",&item);
ptr->data=item;
If(head == NULL)
{

printf(""\nOVERFLOW");

ptr->next = NULL,;
ptr->prev = NULL;
head = ptr;

}

else

{
temp = head;
while(temp->next!=NULL)
{

temp = temp->next;

¥
temp->next = ptr;
ptr ->prev=temp;
ptr->next = NULL;
¥

}

printf("\nnode inserted\n");

}

void insertion_specified()

{

struct node *ptr,*temp;
int item,loc,i;
ptr = (struct node *)malloc(sizeof(struct node));
If(ptr == NULL)
{
printf("\n OVERFLOW");

}

else
{
temp=head,;
printf("Enter the location");
scanf(""%d",&loc);
for(i=0;i<loc;i++)
{
temp = temp->next;
If(temp == NULL)
{

printf(*\n There are less than %d elements",

return;

}
}

printf("Enter value");
scanf("%d",&item);
ptr->data = item;

ptr->next = temp->next;
ptr -> prev = temp;
temp->next = ptr;
temp->next->prev=ptr;
printf("\nnode inserted\n");

163. }

164. }

165. void deletion_beginning()

166. {

167. struct node *ptr;

168. If(head == NULL)

169. {

170. printf("*\n UNDERFLOW");
171. }

172. else if(head->next == NULL)
173. {

174. head = NULL;

175. free(head);

176. printf("\nnode deleted\n");
177. }

178. else

179. {

180. ptr = head;

181. head = head -> next;

182. head -> prev = NULL;
183. free(ptr);

184. printf("\nnode deleted\n");
185.

186.

187. }

188. void deletion_last()

189. {

190. struct node *ptr;

191. If(head == NULL)

192. {

193. printf("*\n UNDERFLOW");
194, }

195. else if(head->next == NULL)

196.
197.
198.
199.
200.
201.
202.
203.
204,
205.
206.
207.
208.
209.
210.
211.
212.
213.
214,
215.
216.
217.

{
head = NULL;

free(head);
printf("\nnode deleted\n");
¥

else
{
ptr = head;
If(ptr->next '= NULL)
{
ptr = ptr -> next;
¥
ptr -> prev -> next = NULL,;
free(ptr);
printf("\nnode deleted\n");

b
}
void deletion_specified()
{
struct node *ptr, *temp;
int val,
printf("\n Enter the data after which the node is to

be deleted : ");

218.
219.
220.
221.
222.
223.
224,
225.
226.
227.

scanf("%d", &val);

ptr = head;

while(ptr -> data != val)
ptr = ptr -> next;

If(ptr -> next == NULL)
{

printf("\nCan't delete\n");

¥
else if(ptr -> next -> next == NULL)

{

387

ptr ->next = NULL,;
}

else

{
temp = ptr -> next;
ptr -> next = temp -> next;
temp -> next -> prev = pr;
free(temp);
printf("\nnode deleted\n");

¥
¥
void display()
{
struct node *ptr;
printf("\n printing values...\n");
ptr = head;
while(ptr 1= NULL)

{

printf("%d\n",ptr->data);
ptr=ptr->next;

}

}

void search()
{
struct node *ptr;
Int item,i=0,flag;
ptr = head;
if(ptr == NULL)
{
printf("\nEmpty List\n");
}

else

{

388

261. printf("\nEnter item which you want to
search?\n");

262. scanf("'%d",&item);

263. while (ptr'=NULL)

264. {

265. If(ptr->data == item)

266. {

267. printf("\nitem found at location %d
"i+1);

268. flag=0;

269. break;

270. }

271. else

272. {

273. flag=1,;

274. }

275. I++;

276. ptr = ptr -> next;

277. }

278. if(flag==1)

279. {

280. printf("\nltem not found\n");
281. }

282.

283.

284. }

Output

*********M al n M enu *khkkkikkkikkikk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
8

printing values...

*********M al n M enu *khkkkikkikkikk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
1

Enter Item valuel?2

Node inserted

*********M al n M enu *khkkkikkikkikk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
1

Enter ltem valuel23

Node inserted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last

392

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
1

Enter Item valuel234

Node inserted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining

2.Insert at last
3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
8

printing values...
1234

123

12

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining

2.Insert at last
3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
2

Enter value89

node inserted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last
3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
3
Enter the locationl

Enter valuel12345

node inserted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

396

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
8

printing values...
1234

123

12345

12

89

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
4

node deleted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning
5.Delete from last

6.Delete the node after the given data

7.Search
8.Show
9.Exit

Enter your choice?
5

node deleted

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last
3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
8

printing values...
123
12345

*********M al n M enu *khkkkikkikkik

Choose one option from the following list ...

1.Insert in begining
2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
6

Enter the data after which the node is to be deleted : 123

*********M al n M enu *khkkkikkkikkikk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
8

printing values...
123

*********M al n M enu *khkkkikkkikkikk

Choose one option from the following list ...

1.Insert in begining
2.Insert at last
3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
.

Enter item which you want to search?
123

item found at location 1

*********M al n M enu *khkkkikkkikkikk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
6

Enter the data after which the node is to be deleted :

Can't delete

*********M al n M enu *kkkkkkkk

Choose one option from the following list ...

1.Insert in begining

2.Insert at last

3.Insert at any random location
4.Delete from Beginning

5.Delete from last

6.Delete the node after the given data
7.Search

8.Show

9.Exit

Enter your choice?
9

Basic Operations
Following are the basic operations supported by a list.

404

. Insertion — Adds an element at the beginning of the list.

. Deletion — Deletes an element at the beginning of the list.

. Insert Last — Adds an element at the end of the list.

. Delete Last — Deletes an element from the end of the list.

. Insert After — Adds an element after an item on the list.

. Delete — Deletes an element from the list using the key.

. Display forward — Displays the complete list in a forward
Mmanner.

. Display backward — Displays the complete list in a
backward manner.

Insertion Operation

The following code demonstrates the insertion operation at the
beginning of a doubly linked list.

Example

/linsert link at the first location

void insertFirst(int key, int data) {

[[create a link

struct node *link = (struct node*) malloc(sizeof(struct node));

link->key = key;

link->data = data:

iIf(isEmpty()) {
/Imake it the last link

last = link;

}else {

/lupdate first prev link
head->prev = link;

}

//point it to old first link

link->next = head:;

/lpoint first to new first link

head = link;

Deletion Operation
The following code demonstrates the deletion operation at the

beginning of a doubly linked list.
Example
//delete first item

struct node* deleteFirst() {

/Isave reference to first link

struct node *tempLink = head;

//if only one link
if(head->next == NULL) {

last = NULL;

}else {
head->next->prev = NULL,;

}

head = head->next;

[/Ireturn the deleted link

return tempLink;

}

Insertion at the End of an Operation

The following code demonstrates the insertion operation at the
last position of a doubly linked list.

Example

/linsert link at the last location

void insertLast(int key, int data) {

[[create a link

struct node *link = (struct node*) malloc(sizeof(struct node));

link->key = key;

link->data = data:

If(isEmpty()) {
//make it the last link
last = link;
}else {
//make link a new last link

last->next = link;

//mark old last node as prev of new link
link->prev = last;

}

//point last to new last node

last = link;

Circular Linked Lists: all operations their
algorithms and the complexity analysis:

What is Circular linked list?

The circular linked list is a linked list where all nodes are
connected to form a circle. In a circular linked list, the first
node and the last node are connected to each other which forms
a circle. There is no NULL at the end.

