
342

Output

15 14 12 10

Element not present in the list

15 14 12 10

15 14 12

15 12

Time Complexity: O(n)

Auxiliary Space: O(n) (due to recursion call stack)

Linked representation of Stack and Queue:

Linked list implementation of stack

Instead of using array, we can also use linked list to implement

stack. Linked list allocates the memory dynamically. However,

time complexity in both the scenario is same for all the

operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained

non-contiguously in the memory. Each node contains a pointer

to its immediate successor node in the stack. Stack is said to be

overflown if the space left in the memory heap is not enough to

create a node.

343

The top most node in the stack always contains null in its

address field. Lets discuss the way in which, each operation is

performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation.

Pushing an element to a stack in linked list implementation is

different from that of an array implementation. In order to push

an element onto the stack, the following steps are involved.

Java Try Catch

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start

node of the list. This includes assigning value to the data

part of the node and assign null to the address part of the

node.

3. If there are some nodes in the list already, then we have to

add the new element in the beginning of the list (to not

violate the property of the stack). For this purpose, assign

the address of the starting element to the address field of

the new node and make the new node, the starting node of

the list.

344

4. Time Complexity : o(1)

C implementation :

1. void push ()

2. {

3. int val;

4. struct node *ptr =(struct

node*)malloc(sizeof(struct node));

5. if(ptr == NULL)

6. {

7. printf("not able to push the element");

8. }

9. else

10. {

345

11. printf("Enter the value");

12. scanf("%d",&val);

13. if(head==NULL)

14. {

15. ptr->val = val;

16. ptr -> next = NULL;

17. head=ptr;

18. }

19. else

20. {

21. ptr->val = val;

22. ptr->next = head;

23. head=ptr;

24.

25. }

26. printf("Item pushed");

27.

28. }

29. }

5. Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop

operation. Deleting a node from the linked list

implementation of stack is different from that in the array

implementation. In order to pop an element from the stack,

we need to follow the following steps :

1. Check for the underflow condition: The underflow

condition occurs when we try to pop from an already

empty stack. The stack will be empty if the head

pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the

elements are popped only from one end, therefore,

the value stored in the head pointer must be deleted

346

and the node must be freed. The next node of the head

node now becomes the head node.

6. Time Complexity : o(n)

C implementation

1. void pop()

2. {

3. int item;

4. struct node *ptr;

5. if (head == NULL)

6. {

7. printf("Underflow");

8. }

9. else

10. {

11. item = head->val;

12. ptr = head;

13. head = head->next;

14. free(ptr);

15. printf("Item popped");

16.

17. }

18. }

7. Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the

nodes of the linked list organized in the form of stack. For

this purpose, we need to follow the following steps.

1. Copy the head pointer into a temporary pointer.

2. Move the temporary pointer through all the nodes of

the list and print the value field attached to every

node.

8. Time Complexity : o(n)

C Implementation

1. void display()

347

2. {

3. int i;

4. struct node *ptr;

5. ptr=head;

6. if(ptr == NULL)

7. {

8. printf("Stack is empty\n");

9. }

10. else

11. {

12. printf("Printing Stack elements \n");

13. while(ptr!=NULL)

14. {

15. printf("%d\n",ptr->val);

16. ptr = ptr->next;

17. }

18. }

19. }

9. Menu Driven program in C implementing all the stack

operations using linked list :

1. #include <stdio.h>

2. #include <stdlib.h>

3. void push();

4. void pop();

5. void display();

6. struct node

7. {

8. int val;

9. struct node *next;

10. };

11. struct node *head;

12.

13. void main ()

348

14. {

15. int choice=0;

16. printf("\n*********Stack operations using

linked list*********\n");

17. printf("\n---

---\n");

18. while(choice != 4)

19. {

20. printf("\n\nChose one from the below

options...\n");

21. printf("\n1.Push\n2.Pop\n3.Show\n4.Exit"

);

22. printf("\n Enter your choice \n");

23. scanf("%d",&choice);

24. switch(choice)

25. {

26. case 1:

27. {

28. push();

29. break;

30. }

31. case 2:

32. {

33. pop();

34. break;

35. }

36. case 3:

37. {

38. display();

39. break;

40. }

41. case 4:

42. {

349

43. printf("Exiting....");

44. break;

45. }

46. default:

47. {

48. printf("Please Enter valid choice ");

49. }

50. };

51. }

52. }

53. void push ()

54. {

55. int val;

56. struct node *ptr = (struct

node*)malloc(sizeof(struct node));

57. if(ptr == NULL)

58. {

59. printf("not able to push the element");

60. }

61. else

62. {

63. printf("Enter the value");

64. scanf("%d",&val);

65. if(head==NULL)

66. {

67. ptr->val = val;

68. ptr -> next = NULL;

69. head=ptr;

70. }

71. else

72. {

73. ptr->val = val;

74. ptr->next = head;

350

75. head=ptr;

76.

77. }

78. printf("Item pushed");

79.

80. }

81. }

82.

83. void pop()

84. {

85. int item;

86. struct node *ptr;

87. if (head == NULL)

88. {

89. printf("Underflow");

90. }

91. else

92. {

93. item = head->val;

94. ptr = head;

95. head = head->next;

96. free(ptr);

97. printf("Item popped");

98.

99. }

100. }

101. void display()

102. {

103. int i;

104. struct node *ptr;

105. ptr=head;

106. if(ptr == NULL)

107. {

351

108. printf("Stack is empty\n");

109. }

110. else

111. {

112. printf("Printing Stack elements \n");

113. while(ptr!=NULL)

114. {

115. printf("%d\n",ptr->val);

116. ptr = ptr->next;

117. }

118. }

119. }

120.

Linked Representation of Queue:

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this

tutorial, the array implementation can not be used for the large

scale applications where the queues are implemented. One of

the alternative of array implementation is linked list

implementation of queue.

The storage requirement of linked representation of a queue

with n elements is o(n) while the time requirement for

operations is o(1).

In a linked queue, each node of the queue consists of two parts

i.e. data part and the link part. Each element of the queue points

to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the

memory i.e. front pointer and rear pointer. The front pointer

contains the address of the starting element of the queue while

the rear pointer contains the address of the last element of the

queue.

352

Insertion and deletions are performed at rear and front end

respectively. If front and rear both are NULL, it indicates that

the queue is empty.

The linked representation of queue is shown in the following

figure.

Operation on Linked Queue

There are two basic operations which can be implemented on

the linked queues. The operations are Insertion and Deletion.

Insert operation

The insert operation append the queue by adding an element to

the end of the queue. The new element will be the last element

of the queue.

Firstly, allocate the memory for the new node ptr by using the

following statement.

1. Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr

into the linked queue.

In the first scenario, we insert element into an empty queue. In

this case, the condition front = NULL becomes true. Now, the

new element will be added as the only element of the queue and

the next pointer of front and rear pointer both, will point to

NULL.

1. ptr -> data = item;

2. if(front == NULL)

353

3. {

4. front = ptr;

5. rear = ptr;

6. front -> next = NULL;

7. rear -> next = NULL;

8. }

In the second case, the queue contains more than one element.

The condition front = NULL becomes false. In this scenario,

we need to update the end pointer rear so that the next pointer

of rear will point to the new node ptr. Since, this is a linked

queue, hence we also need to make the rear pointer point to the

newly added node ptr. We also need to make the next pointer

of rear point to NULL.

1. rear -> next = ptr;

2. rear = ptr;

3. rear->next = NULL;

In this way, the element is inserted into the queue. The

algorithm and the C implementation is given as follows.

Algorithm

 Step 1: Allocate the space for the new node PTR

 Step 2: SET PTR -> DATA = VAL

 Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

 Step 4: END

354

C Function

1. void insert(struct node *ptr, int item;)

2. {

3.
4.
5. ptr = (struct node *) malloc (sizeof(struct node));

6. if(ptr == NULL)

7. {

8. printf("\nOVERFLOW\n");

9. return;

10. }

11. else

12. {

13. ptr -> data = item;

14. if(front == NULL)

15. {

16. front = ptr;

17. rear = ptr;

18. front -> next = NULL;

19. rear -> next = NULL;

20. }

21. else

22. {

23. rear -> next = ptr;

24. rear = ptr;

25. rear->next = NULL;

26. }

27. }

28. }

Deletion

Deletion operation removes the element that is first inserted

among all the queue elements. Firstly, we need to check either

355

the list is empty or not. The condition front == NULL becomes

true if the list is empty, in this case , we simply write underflow

on the console and make exit.

Otherwise, we will delete the element that is pointed by the

pointer front. For this purpose, copy the node pointed by the

front pointer into the pointer ptr. Now, shift the front pointer,

point to its next node and free the node pointed by the node ptr.

This is done by using the following statements.

1. ptr = front;

2. front = front -> next;

3. free(ptr);

The algorithm and C function is given as follows.

Algorithm

 Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

 Step 2: SET PTR = FRONT

 Step 3: SET FRONT = FRONT -> NEXT

 Step 4: FREE PTR

 Step 5: END

C Function

1. void delete (struct node *ptr)

2. {

3. if(front == NULL)

4. {

5. printf("\nUNDERFLOW\n");

6. return;

7. }

8. else

356

9. {

10. ptr = front;

11. front = front -> next;

12. free(ptr);

13. }

14. }

Menu-Driven Program implementing all the operations on

Linked Queue

1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

5. int data;

6. struct node *next;

7. };

8. struct node *front;

9. struct node *rear;

10. void insert();

11. void delete();

12. void display();

13. void main ()

14. {

15. int choice;

16. while(choice != 4)

17. {

18. printf("\n*************************Main

Menu*****************************\n");

19. printf("\n===========================

======================================\n")

;

20. printf("\n1.insert an element\n2.Delete an

element\n3.Display the queue\n4.Exit\n");

357

21. printf("\nEnter your choice ?");

22. scanf("%d",& choice);

23. switch(choice)

24. {

25. case 1:

26. insert();

27. break;

28. case 2:

29. delete();

30. break;

31. case 3:

32. display();

33. break;

34. case 4:

35. exit(0);

36. break;

37. default:

38. printf("\nEnter valid choice??\n");

39. }

40. }

41. }

42. void insert()

43. {

44. struct node *ptr;

45. int item;

46.

47. ptr = (struct node *) malloc (sizeof(struct node));

48. if(ptr == NULL)

49. {

50. printf("\nOVERFLOW\n");

51. return;

52. }

53. else

358

54. {

55. printf("\nEnter value?\n");

56. scanf("%d",&item);

57. ptr -> data = item;

58. if(front == NULL)

59. {

60. front = ptr;

61. rear = ptr;

62. front -> next = NULL;

63. rear -> next = NULL;

64. }

65. else

66. {

67. rear -> next = ptr;

68. rear = ptr;

69. rear->next = NULL;

70. }

71. }

72. }

73. void delete ()

74. {

75. struct node *ptr;

76. if(front == NULL)

77. {

78. printf("\nUNDERFLOW\n");

79. return;

80. }

81. else

82. {

83. ptr = front;

84. front = front -> next;

85. free(ptr);

86. }

359

87. }

88. void display()

89. {

90. struct node *ptr;

91. ptr = front;

92. if(front == NULL)

93. {

94. printf("\nEmpty queue\n");

95. }

96. else

97. { printf("\nprinting values\n");

98. while(ptr != NULL)

99. {

100. printf("\n%d\n",ptr -> data);

101. ptr = ptr -> next;

102. }

103. }

104. }

Output:

Learn more

volume is gedempt

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

360

Enter your choice ?1

Enter value?

123

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?1

Enter value?

90

***********Main Menu**********

==============================

361

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?3

printing values

123

90

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?2

362

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?3

printing values

90

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?4

363

Header nodes:

A header node is a special node that is found at the beginning

of the list. A list that contains this type of node, is called the

header-linked list. This type of list is useful when information

other than that found in each node is needed.

For example, suppose there is an application in which the

number of items in a list is often calculated. Usually, a list is

always traversed to find the length of the list. However, if the

current length is maintained in an additional header node that

information can be easily obtained.

Types of Header Linked List

1. Grounded Header Linked List

It is a list whose last node contains the NULL pointer.

In the header linked list the start pointer always points

to the header node. start -> next = NULL indicates that

the grounded header linked list is empty. The operations

that are possible on this type of linked list are Insertion,

Deletion, and Traversing.

364

2.
Circular Header Linked List

A list in which last node points back to the header node

is called circular linked list. The chains do not indicate

first or last nodes. In this case, external pointers provide

a frame of reference because last node of a circular

linked list does not contain the NULL pointer. The

possible operations on this type of linked list are

Insertion, Deletion and Traversing.

365

366

// C program for a Header Linked List

#include <malloc.h>

#include <stdio.h>

// Structure of the list

struct link {

 int info;

 struct link* next;

};

// Empty List

struct link* start = NULL;

// Function to create a header linked list

struct link* create_header_list(int data)

{

 // Create a new node

 struct link *new_node, *node;

 new_node = (struct link*)

 malloc(sizeof(struct link));

 new_node->info = data;

 new_node->next = NULL;

367

 // If it is the first node

 if (start == NULL) {

 // Initialize the start

 start = (struct link*)

 malloc(sizeof(struct link));

 start->next = new_node;

 }

 else {

 // Insert the node in the end

 node = start;

 while (node->next != NULL) {

 node = node->next;

 }

 node->next = new_node;

 }

 return start;

}

// Function to display the

// header linked list

struct link* display()

{

368

 struct link* node;

 node = start;

 node = node->next;

 while (node != NULL) {

 printf("%d ", node->info);

 node = node->next;

 }

 printf("\n");

 return start;

}

// Driver code

int main()

{

 // Create the list

 create_header_list(11);

 create_header_list(12);

 create_header_list(13);

 // Print the list

 display();

 create_header_list(14);

 create_header_list(15);

369

 // Print the list

 display();

 return 0;

}

370

Output:

11 12 13

11 12 13 14 15

Applications of Header Linked List

Polynomials

 The header linked lists are frequently used to maintain

the polynomials in memory. The header node is used to

represent the zero polynomial.

 Suppose we have

F(x) = 5x5 – 3x3 + 2x2 + x1 +10x0
 From the polynomial represented by F(x) it is clear that

this polynomial has two parts, coefficient and

exponent, where, x is formal parameter. Hence, we

can say that a polynomial is sum of terms, each of which

consists of a coefficient and an exponent.

 The computer implementation requires implementing

polynomials as a list of pair of coefficient and exponent.

Each of these pairs will constitute a structure, so a

polynomial will be represented as a list of structures.

 If one wants to represent F(x) with help of linked list

then the list will contain 5 nodes. When we link each

node we get a linked list structure that represents

polynomial F(x).

371

Addition of polynomials

1. To add two polynomials, we need to scan them once.

2. If we find terms with the same exponent in the two

polynomials, then we add the coefficients, otherwise,

we copy the term of larger exponent into the sum and

go on.

3. When we reach at the end of one of the polynomial, then

remaining part of the other is copied into the sum.

4. Suppose we have two polynomials as illustrated and we

have to perform addition of these polynomials.

372

5.

When we scan first node of the two polynomials, we

find that exponential power of first node in the second

373

polynomial is greater than that of first node of the first

polynomial.

6. Here the exponent of the first node of the second

polynomial is greater hence we have to copy first node

of the second polynomial into the sum.

7. Then we consider the first node of the first polynomial

and once again first node value of first polynomial is

compared with the second node value of the second

polynomial.

8. Here the first node exponent value of the first

polynomial is greater than the second node exponent

value of the second polynomial. We copy the first node

of the first polynomial into the sum.

9. Now consider the second node of the first polynomial

and compare it with the second node of the second

polynomial.

10. Here the exponent value of the second node of the

second polynomial is greater than the second node of

the first polynomial, hence we copy the second node of

the second list into the sum.

11. Now we consider the third node exponent of the

second polynomial and compare it with second node

exponent value of the first polynomial. We find that

both are equal, hence perform addition of their

coefficient and copy in to the sum.

12. This process continues till all the nodes of both the

polynomial are exhausted. For example after adding the

above two polynomials, we get the following resultant

polynomial as shown.

