
281

SECTION-III

Linked List

Single Linked List:

Linked List

 Linked List can be defined as collection of objects called

nodes that are randomly stored in the memory.

 A node contains two fields i.e. data stored at that particular

address and the pointer which contains the address of the

next node in the memory.

 The last node of the list contains pointer to the null.

Uses of Linked List

 The list is not required to be contiguously present in the

memory. The node can reside any where in the memory

and linked together to make a list. This achieves optimized

utilization of space.

 list size is limited to the memory size and doesn't need to

be declared in advance.

 Empty node can not be present in the linked list.

 We can store values of primitive types or objects in the

singly linked list.

Why use linked list over array?

282

Till now, we were using array data structure to organize the

group of elements that are to be stored individually in the

memory. However, Array has several advantages and

disadvantages which must be known in order to decide the data

structure which will be used throughout the program.

Array contains following limitations:

1. The size of array must be known in advance before using

it in the program.

2. Increasing size of the array is a time taking process. It is

almost impossible to expand the size of the array at run

time.

3. All the elements in the array need to be contiguously

stored in the memory. Inserting any element in the array

needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the

limitations of an array. Using linked list is useful because,

1. It allocates the memory dynamically. All the nodes of

linked list are non-contiguously stored in the memory and

linked together with the help of pointers.

2. Sizing is no longer a problem since we do not need to

define its size at the time of declaration. List grows as per

the program's demand and limited to the available memory

space.

Singly linked list or One way chain

Singly linked list can be defined as the collection of ordered set

of elements. The number of elements may vary according to

need of the program. A node in the singly linked list consist of

two parts: data part and link part. Data part of the node stores

actual information that is to be represented by the node while

283

the link part of the node stores the address of its immediate

successor.

One way chain or singly linked list can be traversed only in one

direction. In other words, we can say that each node contains

only next pointer, therefore we can not traverse the list in the

reverse direction.

Consider an example where the marks obtained by the student

in three subjects are stored in a linked list as shown in the

figure.

In the above figure, the arrow represents the links. The data part

of every node contains the marks obtained by the student in the

different subject. The last node in the list is identified by the

null pointer which is present in the address part of the last node.

We can have as many elements we require, in the data part of

the list.

Complexity

Data

Stru

ctur

e

Time Complexity Spac

e

Com

pleit

y

284

 Average Worst Wors

t

 Acc

ess

Se

arc

h

Inse

rtio

n

Del

etio

n

Ac

ces

s

Se

arc

h

Inse

rtio

n

Del

etio

n

Singl

y

Linke

d List

θ(n

)

θ(n

)

θ(1) θ(1) O(

n)

O(

n)

O(1

)

O(1

)

O(n)

Operations on Singly Linked List

There are various operations which can be performed on singly

linked list. A list of all such operations is given below.

Node Creation

1. struct node

2. {

3. int data;

4. struct node *next;

285

5. };

6. struct node *head, *ptr;

7. ptr = (struct node *)malloc(sizeof(struct node *));

Insertion

The insertion into a singly linked list can be performed at

different positions. Based on the position of the new node being

inserted, the insertion is categorized into the following

categories.

SN Operation Description

1 Insertion at

beginning

It involves inserting any element at the

front of the list. We just need to a few

link adjustments to make the new node

as the head of the list.

2 Insertion at

end of the list

It involves insertion at the last of the

linked list. The new node can be

inserted as the only node in the list or it

can be inserted as the last one. Different

286

logics are implemented in each

scenario.

3 Insertion after

specified node

It involves insertion after the specified

node of the linked list. We need to skip

the desired number of nodes in order to

reach the node after which the new

node will be inserted. .

Deletion and Traversing

The Deletion of a node from a singly linked list can be

performed at different positions. Based on the position of the

node being deleted, the operation is categorized into the

following categories.

SN Operation Description

1 Deletion at

beginning

It involves deletion of a node from the

beginning of the list. This is the

simplest operation among all. It just

287

need a few adjustments in the node

pointers.

2 Deletion at

the end of the

list

It involves deleting the last node of the

list. The list can either be empty or full.

Different logic is implemented for the

different scenarios.

3 Deletion after

specified

node

It involves deleting the node after the

specified node in the list. we need to

skip the desired number of nodes to

reach the node after which the node will

be deleted. This requires traversing

through the list.

288

4 Traversing In traversing, we simply visit each node

of the list at least once in order to

perform some specific operation on it,

for example, printing data part of each

node present in the list.

5 Searching In searching, we match each element of

the list with the given element. If the

element is found on any of the location

then location of that element is returned

otherwise null is returned. .

Linked List in C: Menu Driven Program

1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

5. int data;

6. struct node *next;

7. };

289

8. struct node *head;

9.
10. void beginsert ();

11. void lastinsert ();

12. void randominsert();

13. void begin_delete();

14. void last_delete();

15. void random_delete();

16. void display();

17. void search();

18. void main ()

19. {

20. int choice =0;

21. while(choice != 9)

22. {

23. printf("\n\n*********Main

Menu*********\n");

24. printf("\nChoose one option from the following

list ...\n");

25. printf("\n===========================

====================\n");

26. printf("\n1.Insert in begining\n2.Insert at

last\n3.Insert at any random location\n4.Delete from

Beginning\n

27. 5.Delete from last\n6.Delete node after

specified location\n7.Search for an

element\n8.Show\n9.Exit\n");

28. printf("\nEnter your choice?\n");

29. scanf("\n%d",&choice);

30. switch(choice)

31. {

32. case 1:

33. beginsert();

290

34. break;

35. case 2:

36. lastinsert();

37. break;

38. case 3:

39. randominsert();

40. break;

41. case 4:

42. begin_delete();

43. break;

44. case 5:

45. last_delete();

46. break;

47. case 6:

48. random_delete();

49. break;

50. case 7:

51. search();

52. break;

53. case 8:

54. display();

55. break;

56. case 9:

57. exit(0);

58. break;

59. default:

60. printf("Please enter valid choice..");

61. }

62. }

63. }

64. void beginsert()

65. {

66. struct node *ptr;

291

67. int item;

68. ptr = (struct node *) malloc(sizeof(struct node

*));

69. if(ptr == NULL)

70. {

71. printf("\nOVERFLOW");

72. }

73. else

74. {

75. printf("\nEnter value\n");

76. scanf("%d",&item);

77. ptr->data = item;

78. ptr->next = head;

79. head = ptr;

80. printf("\nNode inserted");

81. }

82.

83. }

84. void lastinsert()

85. {

86. struct node *ptr,*temp;

87. int item;

88. ptr = (struct node*)malloc(sizeof(struct

node));

89. if(ptr == NULL)

90. {

91. printf("\nOVERFLOW");

92. }

93. else

94. {

95. printf("\nEnter value?\n");

96. scanf("%d",&item);

97. ptr->data = item;

292

98. if(head == NULL)

99. {

100. ptr -> next = NULL;

101. head = ptr;

102. printf("\nNode inserted");

103. }

104. else

105. {

106. temp = head;

107. while (temp -> next != NULL)

108. {

109. temp = temp -> next;

110. }

111. temp->next = ptr;

112. ptr->next = NULL;

113. printf("\nNode inserted");

114.

115. }

116. }

117. }

118. void randominsert()

119. {

120. int i,loc,item;

121. struct node *ptr, *temp;

122. ptr = (struct node *) malloc (sizeof(struct node));

123. if(ptr == NULL)

124. {

125. printf("\nOVERFLOW");

126. }

127. else

128. {

129. printf("\nEnter element value");

130. scanf("%d",&item);

293

131. ptr->data = item;

132. printf("\nEnter the location after which you

want to insert ");

133. scanf("\n%d",&loc);

134. temp=head;

135. for(i=0;i<loc;i++)

136. {

137. temp = temp->next;

138. if(temp == NULL)

139. {

140. printf("\ncan't insert\n");

141. return;

142. }

143.

144. }

145. ptr ->next = temp ->next;

146. temp ->next = ptr;

147. printf("\nNode inserted");

148. }

149. }

150. void begin_delete()

151. {

152. struct node *ptr;

153. if(head == NULL)

154. {

155. printf("\nList is empty\n");

156. }

157. else

158. {

159. ptr = head;

160. head = ptr->next;

161. free(ptr);

294

162. printf("\nNode deleted from the begining

...\n");

163. }

164. }

165. void last_delete()

166. {

167. struct node *ptr,*ptr1;

168. if(head == NULL)

169. {

170. printf("\nlist is empty");

171. }

172. else if(head -> next == NULL)

173. {

174. head = NULL;

175. free(head);

176. printf("\nOnly node of the list deleted ...\n");

177. }

178.

179. else

180. {

181. ptr = head;

182. while(ptr->next != NULL)

183. {

184. ptr1 = ptr;

185. ptr = ptr ->next;

186. }

187. ptr1->next = NULL;

188. free(ptr);

189. printf("\nDeleted Node from the last ...\n");

190. }

191. }

192. void random_delete()

193. {

295

194. struct node *ptr,*ptr1;

195. int loc,i;

196. printf("\n Enter the location of the node after

which you want to perform deletion \n");

197. scanf("%d",&loc);

198. ptr=head;

199. for(i=0;i<loc;i++)

200. {

201. ptr1 = ptr;

202. ptr = ptr->next;

203.

204. if(ptr == NULL)

205. {

206. printf("\nCan't delete");

207. return;

208. }

209. }

210. ptr1 ->next = ptr ->next;

211. free(ptr);

212. printf("\nDeleted node %d ",loc+1);

213. }

214. void search()

215. {

216. struct node *ptr;

217. int item,i=0,flag;

218. ptr = head;

219. if(ptr == NULL)

220. {

221. printf("\nEmpty List\n");

222. }

223. else

224. {

296

225. printf("\nEnter item which you want to

search?\n");

226. scanf("%d",&item);

227. while (ptr!=NULL)

228. {

229. if(ptr->data == item)

230. {

231. printf("item found at location %d ",i+1);

232. flag=0;

233. }

234. else

235. {

236. flag=1;

237. }

238. i++;

239. ptr = ptr -> next;

240. }

241. if(flag==1)

242. {

243. printf("Item not found\n");

244. }

245. }

246.

247. }

248.

249. void display()

250. {

251. struct node *ptr;

252. ptr = head;

253. if(ptr == NULL)

254. {

255. printf("Nothing to print");

256. }

297

257. else

258. {

259. printf("\nprinting values\n");

260. while (ptr!=NULL)

261. {

262. printf("\n%d",ptr->data);

263. ptr = ptr -> next;

264. }

265. }

266. }

267.

Output:
 *********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

1

298

Enter value

1

Node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

2

Enter value?

2

Node inserted

*********Main Menu*********

Choose one option from the following list ...

299

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

3

Enter element value1

Enter the location after which you want to insert 1

Node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

300

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

8

printing values

1

2

1

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

301

Enter your choice?

2

Enter value?

123

Node inserted

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

1

Enter value

1234

Node inserted

302

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

4

Node deleted from the begining ...

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

303

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

5

Deleted Node from the last ...

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

6

Enter the location of the node after which you want to perform

deletion

304

1

Deleted node 2

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

8

printing values

1

1

*********Main Menu*********

Choose one option from the following list ...

305

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

7

Enter item which you want to search?

1

item found at location 1

item found at location 2

*********Main Menu*********

Choose one option from the following list ...

==

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

306

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

9

Representation in memory:

A linked list is represented by a pointer to the first node of the

linked list. The first node is called the head of the linked list. If

the linked list is empty, then the value of the head points to

NULL.

Each node in a list consists of at least two parts:

 A Data Item (we can store integer, strings, or any type

of data).

 Pointer (Or Reference) to the next node (connects one

node to another) or An address of another node

In C, we can represent a node using structures. Below is an

example of a linked list node with integer data.

In Java or C#, LinkedList can be represented as a class and a

Node as a separate class. The LinkedList class contains a

reference of Node class type.

 C

 C++

 Java

 Python

 C#

 Javascript

307

// A linked list node

struct Node {

 int data;

 struct Node* next;

};

Construction of a simple linked list with 3 nodes:

 C

 C++

 Java

 Python

 C#

 Javascript

308

// C program to implement a

// linked list

#include <stdio.h>

#include <stdlib.h>

struct Node {

 int data;

 struct Node* next;

};

// Driver's code

int main()

{

 struct Node* head = NULL;

 struct Node* second = NULL;

 struct Node* third = NULL;

 // allocate 3 nodes in the heap

 head = (struct Node*)malloc(sizeof(struct Node));

 second = (struct Node*)malloc(sizeof(struct Node));

 third = (struct Node*)malloc(sizeof(struct Node));

 /* Three blocks have been allocated dynamically.

 We have pointers to these three blocks as head,

 second and third

 head second third

 | | |

 | | |

 +---+-----+ +----+----+ +----+----+

 | # | # | | # | # | | # | # |

 +---+-----+ +----+----+ +----+----+

309

 # represents any random value.

 Data is random because we haven’t assigned

 anything yet */

 head->data = 1; // assign data in first node

 head->next = second; // Link first node with

 // the second node

 /* data has been assigned to the data part of the first

 block (block pointed by the head). And next

 pointer of first block points to second.

 So they both are linked.

 head second third

 | | |

 | | |

 +---+---+ +----+----+ +-----+----+

 | 1 | o----->| # | # | | # | # |

 +---+---+ +----+----+ +-----+----+

 */

 // assign data to second node

 second->data = 2;

 // Link second node with the third node

 second->next = third;

 /* data has been assigned to the data part of the second

 block (block pointed by second). And next

 pointer of the second block points to the third

 block. So all three blocks are linked.

310

 head second third

 | | |

 | | |

 +---+---+ +---+---+ +----+----+

 | 1 | o----->| 2 | o-----> | # | # |

 +---+---+ +---+---+ +----+----+ */

 third->data = 3; // assign data to third node

 third->next = NULL;

 /* data has been assigned to data part of third

 block (block pointed by third). And next pointer

 of the third block is made NULL to indicate

 that the linked list is terminated here.

 We have the linked list ready.

 head

 |

 |

 +---+---+ +---+---+ +----+------+

 | 1 | o----->| 2 | o-----> | 3 | NULL |

 +---+---+ +---+---+ +----+------+

 Note that only head is sufficient to represent

 the whole list. We can traverse the complete

 list by following next pointers. */

 return 0;

}

