
252

 Queue overflow (isfull): It shows the overflow condition

when the queue is completely full.

 Queue underflow (isempty): It shows the underflow

condition when the Queue is empty, i.e., no elements are

in the Queue.

Now, let's see the ways to implement the queue.

Ways to implement the queue

There are two ways of implementing the Queue:

 Implementation using array: The sequential allocation

in a Queue can be implemented using an array.

 Implementation using Linked list: The linked list

allocation in a Queue can be implemented using a linked

list.

Operations on each types of Queues: Algorithms and

their analysis

Basic Operations for Queue in Data Structure

Unlike arrays and linked lists, elements in the queue cannot be

operated from their respective locations. They can only be

operated at two data pointers, front and rear. Also, these

operations involve standard procedures like initializing or

defining data structure, utilizing it, and then wholly erasing it

from memory. Here, you must try to comprehend the operations

associated with queues:

 Enqueue() - Insertion of elements to the queue.

 Dequeue() - Removal of elements from the queue.

253

 Peek() - Acquires the data element available at the front

node of the queue without deleting it.

 isFull() - Validates if the queue is full.

 isNull() - Checks if the queue is empty.

When you define the queue data structure, it remains empty as

no element is inserted into it. So, both the front and rear pointer

should be set to -1 (Null memory space). This phase is known

as data structure declaration in the context of programming.

First, understand the operations that allow the queue to

manipulate data elements in a hierarchy.

Enqueue() Operation

The following steps should be followed to insert (enqueue) data

element into a queue -

 Step 1: Check if the queue is full.

 Step 2: If the queue is full, Overflow error.

 Step 3: If the queue is not full, increment the rear pointer

to point to the next available empty space.

 Step 4: Add the data element to the queue location

where the rear is pointing.

 Step 5: Here, you have successfully added 7, 2, and -9.

254

Dequeue() Operation

Obtaining data from the queue comprises two subtasks: access

the data where the front is pointing and remove the data after

access. You should take the following steps to remove data

from the queue -

 Step 1: Check if the queue is empty.

 Step 2: If the queue is empty, Underflow error.

 Step 3: If the queue is not empty, access the data where

the front pointer is pointing.

 Step 4: Increment front pointer to point to the next

available data element.

 Step 5: Here, you have removed 7, 2, and -9 from the

queue data structure.

255

Now that you have dealt with the operations that allow

manipulation of data entities, you will encounter supportive

functions of the queues -

Peek() Operation

This function helps in extracting the data element where the

front is pointing without removing it from the queue. The

algorithm of Peek() function is as follows-

 Step 1: Check if the queue is empty.

 Step 2: If the queue is empty, return “Queue is Empty.”

 Step 3: If the queue is not empty, access the data where

the front pointer is pointing.

 Step 4: Return data.

isFull() Operation

This function checks if the rear pointer is reached at MAXSIZE

to determine that the queue is full. The following steps are

performed in the isFull() operation -

 Step 1: Check if rear == MAXSIZE - 1.

 Step 2: If they are equal, return “Queue is Full.”

256

 Step 3: If they are not equal, return “Queue is not Full.”

isNull() Operation

The algorithm of the isNull() operation is as follows -

 Step 1: Check if the rear and front are pointing to null

memory space, i.e., -1.

 Step 2: If they are pointing to -1, return “Queue is

empty.”

 Step 3: If they are not equal, return “Queue is not

empty.”

Algorithms and their analysis in Queue:

Implementation of Queue using LinkedList

#include <stdio.h>

#include <stdlib.h>

struct queue{

 int num;

 struct queue *next;

};

struct queue *front= NULL;

struct queue *rear= NULL;

int main(){

 enqueue(10);

 enqueue(20);

 printf("Dequeue : %d\n", dequeue());

 printf("Dequeue : %d\n", dequeue());

