
203

Applications of Stack

The following are the applications of the stack:

 Balancing of symbols: Stack is used for balancing a

symbol. For example, we have the following program:

1. int main()

2. {

3. cout<<"Hello";

4. cout<<"javaTpoint";

5. }

As we know, each program has an opening and closing braces;

when the opening braces come, we push the braces in a stack,

and when the closing braces appear, we pop the opening braces

from the stack. Therefore, the net value comes out to be zero.

If any symbol is left in the stack, it means that some syntax

occurs in a program.

204

 String reversal: Stack is also used for reversing a string.

For example, we want to reverse a "javaTpoint" string, so

we can achieve this with the help of a stack.

First, we push all the characters of the string in a stack

until we reach the null character.

After pushing all the characters, we start taking out the

character one by one until we reach the bottom of the

stack.

 UNDO/REDO: It can also be used for performing

UNDO/REDO operations. For example, we have an editor

in which we write 'a', then 'b', and then 'c'; therefore, the

text written in an editor is abc. So, there are three states, a,

ab, and abc, which are stored in a stack. There would be

two stacks in which one stack shows UNDO state, and the

other shows REDO state.

If we want to perform UNDO operation, and want to

achieve 'ab' state, then we implement pop operation.

 Recursion: The recursion means that the function is

calling itself again. To maintain the previous states, the

compiler creates a system stack in which all the previous

records of the function are maintained.

 DFS(Depth First Search): This search is implemented on

a Graph, and Graph uses the stack data structure.

 Backtracking: Suppose we have to create a path to solve

a maze problem. If we are moving in a particular path, and

we realize that we come on the wrong way. In order to

come at the beginning of the path to create a new path, we

have to use the stack data structure.

Expression conversion: Stack can also be used for expression

conversion. This is one of the most important applications of

stack. The list of the expression conversion is given below:

Infix to prefix

Infix to postfix

205

Prefix to infix

Prefix to postfix

 Postfix to infix

 Memory management: The stack manages the memory.

The memory is assigned in the contiguous memory

blocks. The memory is known as stack memory as all the

variables are assigned in a function call stack memory.

The memory size assigned to the program is known to the

compiler. When the function is created, all its variables are

assigned in the stack memory. When the function

completed its execution, all the variables assigned in the

stack are released.

Algorithms and their complexity analysis

Complexity analysis of different stack operations:

1) push():

This operation pushes an element on top of the stack and the

top pointer points to the newly pushed element. It takes one

parameter and pushes it onto the stack.

Below is the implementation of push() using Array :

206

#include <bits/dtc++.h>

using namespace std;

class Stack {

public:

 int stack[10];

 int MAX = 10;

 int top;

 Stack() { top = -1; }

 void push(int val)

 {

 // If top is pointing to

 // maximum size of stack

 if (top >= MAX - 1) {

 // Stack is full

 cout << "Stack Overflow\n";

 return;

 }

 // Point top to new top

 top++;

 // Insert new element at top of stack

 stack[top] = val;

 cout << val

 << " pushed into stack successfully !\n";

 }

};

207

int main()

{

 Stack st;

 st.push(1);

 st.push(2);

 return 0;

}

Output

1 pushed into stack successfully !

2 pushed into stack successfully !

Complexity Analysis:

208

 Time Complexity: O(1), In the push function a single

element is inserted at the last position. This takes a

single memory allocation operation which is done in

constant time.

 Auxiliary Space: O(1), As no extra space is being used.

Below is the implementation of push() using Linked List :

209

#include <bits/stdc++.h>

using namespace std;

class Node {

public:

 int data;

 Node* next;

 Node(int val)

 {

 data = val;

 next = NULL;

 }

};

class Stack {

public:

 Node* top;

 Stack() { top = NULL; }

 void push(int val)

 {

 // Create new node temp and

 // allocate memory in heap

 Node* temp = new Node(val);

 // If stack is empty

 if (!top) {

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

210

 return;

 }

 temp->next = top;

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 }

};

int main()

{

 Stack st;

 st.push(1);

 st.push(2);

 return 0;

}

211

Output

1 pushed into stack successfully !

2 pushed into stack successfully !

Complexity Analysis:

 Time Complexity: O(1), Only a new node is created and

the pointer of the last node is updated. This includes

only memory allocation operations. Hence it can be said

that insertion is done in constant time.

 Auxiliary Space: O(1), No extra space is used.

2) pop():

This operation removes the topmost element in the stack and

returns an error if the stack is already empty.

Below is the implementation of pop() using Array:

 C++

212

#include <bits/stdc++.h>

using namespace std;

class Stack {

public:

 int stack[10];

 int MAX = 10;

 int top;

 Stack() { top = -1; }

 void push(int val)

 {

 // If top is pointing to maximum size of stack

 if (top >= MAX - 1) {

 // Stack is full

 cout << "Stack Overflow\n";

 return;

 }

 // Point top to new top

 top++;

 // Insert new element at top of stack

 stack[top] = val;

 cout << val

 << " pushed into stack successfully !\n";

 }

 void pop()

 {

213

 // Stack is already empty

 if (top < 0) {

 cout << "Stack Underflow";

 }

 else {

 // Removing top of stack

 int x = stack[top--];

 cout << "Element popped from stack : " << x

 << "\n";

 }

 }

};

int main()

{

 Stack st;

 st.push(1);

 st.pop();

 st.pop();

 return 0;

}

214

Output

1 pushed into stack successfully !

Element popped from stack : 1

Stack Underflow

Complexity Analysis:

 Time Complexity: O(1), In array implementation, only

an arithmetic operation is performed i.e., the top pointer

is decremented by 1. This is a constant time function.

 Auxiliary Space: O(1), No extra space is utilized for

deleting an element from the stack.

Below is the implementation of pop() using Linked List :

215

#include <bits/stdc++.h>

using namespace std;

class Node {

public:

 int data;

 Node* next;

 Node(int val)

 {

 data = val;

 next = NULL;

 }

};

class Stack {

public:

 Node* top;

 Stack() { top = NULL; }

 void push(int val)

 {

 // Create new node temp and allocate memory in heap

 Node* temp = new Node(val);

 // If stack is empty

 if (!top) {

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 return;

216

 }

 temp->next = top;

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 }

 void pop()

 {

 Node* temp;

 // Check for stack underflow

 if (top == NULL) {

 cout << "Stack Underflow\n"

 << endl;

 return;

 }

 else {

 // Assign top to temp

 temp = top;

 cout << "Element popped from stack : "

 << temp->data << "\n";

 // Assign second node to top

 top = top->next;

 // This will automatically destroy

 // the link between first node and second node

217

 // Release memory of top node

 // i.e delete the node

 free(temp);

 }

 }

};

int main()

{

 Stack st;

 st.push(1);

 st.pop();

 st.pop();

 return 0;

}

218

Output

1 pushed into stack successfully !

Element popped from stack : 1

Stack Underflow

Complexity Analysis:

 Time Complexity: O(1), Only the first node is deleted

and the top pointer is updated. This is a constant time

operation.

 Auxiliary Space: O(1). No extra space is utilized for

deleting an element from the stack.

3) peek():

This operation prints the topmost element of the stack.

Below is the Implementation of peek() using Array:

 C++

219

#include <bits/stdc++.h>

using namespace std;

class Stack {

public:

 int stack[10];

 int MAX = 10;

 int top;

 Stack() { top = -1; }

 void push(int val)

 {

 // If top is pointing to maximum size of stack

 if (top >= MAX - 1) {

 // Stack is full

 cout << "Stack Overflow\n";

 return;

 }

 // Point top to new top

 top++;

 // Insert new element at top of stack

 stack[top] = val;

 cout << val

 << " pushed into stack successfully !\n";

 }

 int peek()

 {

220

 // Stack is already empty then

 // we can't get peek element

 if (top < 0) {

 cout << "Stack is Empty\n";

 return 0;

 }

 else {

 // Retrieving top element from stack

 int x = stack[top];

 return x;

 }

 }

};

int main()

{

 Stack st;

 st.push(1);

 st.push(2);

 cout << "Peek element of stack : "

 << st.peek() << "\n";

 return 0;

}

221

Output

1 pushed into stack successfully !

2 pushed into stack successfully !

Peek element of stack : 2

Complexity Analysis:

 Time Complexity: O(1), Only a memory address is

accessed. This is a constant time operation.

 Auxiliary Space: O(1), No extra space is utilized to

access the value.

Below is the implementation of peek() using Linked List :

 C++

222

#include <bits/stdc++.h>

using namespace std;

class Node {

public:

 int data;

 Node* next;

 Node(int val)

 {

 data = val;

 next = NULL;

 }

};

class Stack {

public:

 Node* top;

 Stack() { top = NULL; }

 void push(int val)

 {

 // Create new node temp and

 // allocate memory in heap

 Node* temp = new Node(val);

 // If stack is empty

 if (!top) {

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

223

 return;

 }

 temp->next = top;

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 }

 bool isEmpty()

 {

 // If top is NULL it means that

 // there are no elements are in stack

 return top == NULL;

 }

 int peek()

 {

 // If stack is not empty,

 // return the top element

 if (!isEmpty())

 return top->data;

 else

 cout << "Stack is Empty\n";

 exit(1);

 }

};

int main()

{

 Stack st;

 st.push(1);

224

 cout << "Peek element of stack : "

 << st.peek() << "\n";

 return 0;

}

225

Output

1 pushed into stack successfully !

Peek element of stack : 1

Complexity Analysis:

 Time Complexity: O(1). In linked list implementation

also a single memory address is accessed. It takes

constant time.

 Auxiliary Space: O(1). No extra space is utilized to

access the element because only the value in the node

at the top pointer is read.

4) isempty():

This operation tells us whether the stack is empty or not.

Below is the implementation of isempty() using Array :

 C++

226

#include <bits/stdc++.h>

using namespace std;

class Stack {

public:

 int stack[10];

 int MAX = 10;

 int top;

 Stack() { top = -1; }

 void push(int val)

 {

 // If top is pointing to

 // maximum size of stack

 if (top >= MAX - 1) {

 // Stack is full

 cout << "Stack Overflow\n";

 return;

 }

 // Point top to new top

 top++;

 // Insert new element at top of stack

 stack[top] = val;

 cout << val

 << " pushed into stack successfully !\n";

 }

 bool isEmpty()

227

 {

 // If stack is empty return 1

 return (top < 0);

 }

};

int main()

{

 Stack st;

 cout << st.isEmpty();

 return 0;

}

228

Output

1

Complexity Analysis:

 Time Complexity: O(1), It only performs an arithmetic

operation to check if the stack is empty or not.

 Auxiliary Space: O(1), It requires no extra space.

Below is the implementation of isempty() using Linked List :

 C++

229

#include <bits/stdc++.h>

using namespace std;

class Node {

public:

 int data;

 Node* next;

 Node(int val)

 {

 data = val;

 next = NULL;

 }

};

class Stack {

public:

 Node* top;

 Stack() { top = NULL; }

 void push(int val)

 {

 // Create new node temp and allocate memory in heap

 Node* temp = new Node(val);

 // If stack is empty

 if (!top) {

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 return;

230

 }

 temp->next = top;

 top = temp;

 cout << val

 << " pushed into stack successfully !\n";

 }

 bool isEmpty()

 {

 // If top is NULL it means that

 // there are no elements are in stack

 return top == NULL;

 }

};

int main()

{

 Stack st;

 cout << st.isEmpty();

 return 0;

}

231

Output

1

Complexity Analysis:

 Time Complexity: O(1), It checks if the pointer of the

top pointer is Null or not. This operation takes constant

time.

 Auxiliary Space: O(1), No extra space is required.

5) size():

This operation returns the current size of the stack.

Below is the implementation of size() using Array:

 C++

232

#include <bits/stdc++.h>

using namespace std;

class Stack {

public:

 int stack[10];

 int MAX = 10;

 int top;

 Stack() { top = -1; }

 void push(int val)

 {

 // If top is pointing to maximum size of stack

 if (top >= MAX - 1) {

 // Stack is full

 cout << "Stack Overflow\n";

 return;

 }

 // Point top to new top

 top++;

 // Insert new element at top of stack

 stack[top] = val;

 cout << val

 << " pushed into stack successfully !\n";

 }

 int size() { return top + 1; }

};

233

int main()

{

 Stack st;

 st.push(1);

 st.push(2);

 cout << "The size of the stack is " << st.size()

 << endl;

 return 0;

}

Output

1 pushed into stack successfully !

234

2 pushed into stack successfully !

The size of the stack is 2

Complexity Analysis:

 Time Complexity: O(1), because this operation just

performs a basic arithmetic operation.

 Auxiliary Space: O(1) NO extra space is required to

calculate the value of the top pointer.

Below is the implementation of size() using Linked List:

 C++

235

#include <bits/stdc++.h>

using namespace std;

class Node {

public:

 int data;

 Node* next;

 Node(int val)

 {

 data = val;

 next = NULL;

 }

};

class Stack {

public:

 Node* top;

 Node* head;

 int sizeOfStack;

 Stack()

 {

 head = NULL;

 top = NULL;

 sizeOfStack = 0;

 }

 void push(int val)

 {

 // Create new node temp and

 // allocate memory in heap

 Node* temp = new Node(val);

236

 sizeOfStack += 1;

 // If stack is empty

 if (!top) {

 top = temp;

 return;

 }

 temp->next = top;

 top = temp;

 }

 int size() { return sizeOfStack; }

};

int main()

{

 Stack st;

 st.push(1);

 st.push(3);

 st.push(4);

 cout << "Size of stack : " << st.size();

 return 0;

}

237

Output

Size of stack : 3

Complexity Analysis:

 Time Complexity: O(1), because the size is calculated

and updated every time a push or pop operation is

performed and is just returned in this function.

 Auxiliary Space: O(1), NO extra space is required to

calculate the size of the stack

Expression Conversion and evaluation -

corresponding algorithms and

complexity analysis:

Evaluate an expression represented by a String. The expression

can contain parentheses, you can assume parentheses are well-

matched. For simplicity, you can assume only binary

operations allowed are +, -, *, and /. Arithmetic Expressions

can be written in one of three forms:

 Infix Notation: Operators are written between the

operands they operate on, e.g. 3 + 4.

 Prefix Notation: Operators are written before the

operands, e.g + 3 4

 Postfix Notation: Operators are written after operands.

Infix Expressions are harder for Computers to evaluate because

of the additional work needed to decide precedence. Infix

notation is how expressions are written and recognized by

humans and, generally, input to programs. Given that they are

harder to evaluate, they are generally converted to one of the

two remaining forms. A very well known algorithm for

238

converting an infix notation to a postfix notation is Shunting

Yard Algorithm by Edgar Dijkstra.

This algorithm takes as input an Infix Expression and produces

a queue that has this expression converted to postfix notation.

The same algorithm can be modified so that it outputs the result

of the evaluation of expression instead of a queue. The trick is

using two stacks instead of one, one for operands, and one for

operators.

1. While there are still tokens to be read in,

 1.1 Get the next token.

 1.2 If the token is:

 1.2.1 A number: push it onto the value stack.

 1.2.2 A variable: get its value, and push onto the value

stack.

 1.2.3 A left parenthesis: push it onto the operator stack.

 1.2.4 A right parenthesis:

 1 While the thing on top of the operator stack is not a

 left parenthesis,

 1 Pop the operator from the operator stack.

 2 Pop the value stack twice, getting two operands.

 3 Apply the operator to the operands, in the correct

order.

 4 Push the result onto the value stack.

 2 Pop the left parenthesis from the operator stack, and

discard it.

 1.2.5 An operator (call it thisOp):

 1 While the operator stack is not empty, and the top thing

on the

 operator stack has the same or greater precedence as

thisOp,

 1 Pop the operator from the operator stack.

 2 Pop the value stack twice, getting two operands.

239

 3 Apply the operator to the operands, in the correct

order.

 4 Push the result onto the value stack.

 2 Push thisOp onto the operator stack.

2. While the operator stack is not empty,

 1 Pop the operator from the operator stack.

 2 Pop the value stack twice, getting two operands.

 3 Apply the operator to the operands, in the correct order.

 4 Push the result onto the value stack.

3. At this point the operator stack should be empty, and the

value

 stack should have only one value in it, which is the final

result.

Implementation: It should be clear that this algorithm runs in

linear time – each number or operator is pushed onto and

popped from Stack only once.

 C++

 Java

 Python3

 C#

 Javascript

