
199 
 

SECTION-II 

Stack and Queues 

Stack and its operations: 

 
What is a Stack? 

 

A Stack is a linear data structure that follows the LIFO (Last-

In-First-Out) principle. Stack has one end, whereas the Queue 

has two ends (front and rear). It contains only one pointer top 

pointer pointing to the topmost element of the stack. Whenever 

an element is added in the stack, it is added on the top of the 

stack, and the element can be deleted only from the stack. In 

other words, a stack can be defined as a container in which 

insertion and deletion can be done from the one end known 

as the top of the stack. 

Some key points related to stack 

 It is called as stack because it behaves like a real-world 

stack, piles of books, etc. 

 A Stack is an abstract data type with a pre-defined 

capacity, which means that it can store the elements of a 

limited size. 

 It is a data structure that follows some order to insert and 

delete the elements, and that order can be LIFO or FILO. 

Working of Stack 
 

Stack works on the LIFO pattern. As we can observe in the 

below figure there are five memory blocks in the stack; 

therefore, the size of the stack is 5. 

Suppose we want to store the elements in a stack and let's 

assume that stack is empty. We have taken the stack of size 5 



200 
 

as shown below in which we are pushing the elements one by 

one until the stack becomes full. 

 
Since our stack is full as the size of the stack is 5. In the above 

cases, we can observe that it goes from the top to the bottom 

when we were entering the new element in the stack. The stack 

gets filled up from the bottom to the top. 

When we perform the delete operation on the stack, there is 

only one way for entry and exit as the other end is closed. It 

follows the LIFO pattern, which means that the value entered 

first will be removed last. In the above case, the value 5 is 

entered first, so it will be removed only after the deletion of all 

the other elements. 

 

Standard Stack Operations 

 

The following are some common operations implemented 

on the stack: 

 push(): When we insert an element in a stack then the 

operation is known as a push. If the stack is full then the 

overflow condition occurs. 



201 
 

 pop(): When we delete an element from the stack, the 

operation is known as a pop. If the stack is empty means 

that no element exists in the stack, this state is known as 

an underflow state. 

 isEmpty(): It determines whether the stack is empty or 

not. 

 isFull(): It determines whether the stack is full or not.' 

 peek(): It returns the element at the given position. 

 count(): It returns the total number of elements available 

in a stack. 

 change(): It changes the element at the given position. 

 display(): It prints all the elements available in the stack. 

PUSH operation 

 

The steps involved in the PUSH operation is given below: 

 Before inserting an element in a stack, we check whether 

the stack is full. 

 If we try to insert the element in a stack, and the stack is 

full, then the overflow condition occurs. 

 When we initialize a stack, we set the value of top as -1 to 

check that the stack is empty. 

 When the new element is pushed in a stack, first, the value 

of the top gets incremented, i.e., top=top+1, and the 

element will be placed at the new position of the top. 

 The elements will be inserted until we reach the max size 

of the stack. 



202 
 

 
POP operation 

 

The steps involved in the POP operation is given below: 

 Before deleting the element from the stack, we check 

whether the stack is empty. 

 If we try to delete the element from the empty stack, then 

the underflow condition occurs. 

 If the stack is not empty, we first access the element which 

is pointed by the top 

 Once the pop operation is performed, the top is 

decremented by 1, i.e., top=top-1. 


