
20

When the installation is complete, you will be able to run gcc,

g++, ar, ranlib, dlltool, and several other GNU tools from the

Windows command line.

Data Structures - Algorithms Basics

Algorithm is a step-by-step procedure, which defines a set of

instructions to be executed in a certain order to get the desired

output. Algorithms are generally created independent of

underlying languages, i.e. an algorithm can be implemented in

more than one programming language.

From the data structure point of view, following are some

important categories of algorithms −

Search − Algorithm to search an item in a data structure.

Sort − Algorithm to sort items in a certain order.

Insert − Algorithm to insert item in a data structure.

Update − Algorithm to update an existing item in a data

structure.

Delete − Algorithm to delete an existing item from a data

structure.

21

Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm

should have the following characteristics −

Unambiguous − Algorithm should be clear and unambiguous.

Each of its steps (or phases), and their inputs/outputs should be

clear and must lead to only one meaning.

Input − An algorithm should have 0 or more well-defined

inputs.

Output − An algorithm should have 1 or more well-defined

outputs, and should match the desired output.

Finiteness − Algorithms must terminate after a finite number of

steps.

Feasibility − Should be feasible with the available resources.

Independent − An algorithm should have step-by-step

directions, which should be independent of any programming

code.

How to Write an Algorithm?

There are no well-defined standards for writing algorithms.

Rather, it is problem and resource dependent. Algorithms are

never written to support a particular programming code.

22

As we know that all programming languages share basic code

constructs like loops (do, for, while), flow-control (if-else), etc.

These common constructs can be used to write an algorithm.

We write algorithms in a step-by-step manner, but it is not

always the case. Algorithm writing is a process and is executed

after the problem domain is well-defined. That is, we should

know the problem domain, for which we are designing a

solution.

Example

Let's try to learn algorithm-writing by using an example.

Problem − Design an algorithm to add two numbers and display

the result.

Step 1 − START

Step 2 − declare three integers a, b & c

Step 3 − define values of a & b

Step 4 − add values of a & b

Step 5 − store output of step 4 to c

Step 6 − print c

Step 7 − STOP

Algorithms tell the programmers how to code the program.

Alternatively, the algorithm can be written as −

23

Step 1 − START ADD

Step 2 − get values of a & b

Step 3 − c ← a + b

Step 4 − display c

Step 5 − STOP

In design and analysis of algorithms, usually the second method

is used to describe an algorithm. It makes it easy for the analyst

to analyze the algorithm ignoring all unwanted definitions. He

can observe what operations are being used and how the

process is flowing.

Writing step numbers, is optional.

We design an algorithm to get a solution of a given problem. A

problem can be solved in more than one ways.

one problem many solutions

Hence, many solution algorithms can be derived for a given

problem. The next step is to analyze those proposed solution

algorithms and implement the best suitable solution.

Algorithm Analysis

Efficiency of an algorithm can be analyzed at two different

stages, before implementation and after implementation. They

are the following −

24

A Priori Analysis − This is a theoretical analysis of an

algorithm. Efficiency of an algorithm is measured by assuming

that all other factors, for example, processor speed, are constant

and have no effect on the implementation.

A Posterior Analysis − This is an empirical analysis of an

algorithm. The selected algorithm is implemented using

programming language. This is then executed on target

computer machine. In this analysis, actual statistics like

running time and space required, are collected.

We shall learn about a priori algorithm analysis. Algorithm

analysis deals with the execution or running time of various

operations involved. The running time of an operation can be

defined as the number of computer instructions executed per

operation.

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the

time and space used by the algorithm X are the two main

factors, which decide the efficiency of X.

Time Factor − Time is measured by counting the number of key

operations such as comparisons in the sorting algorithm.

Space Factor − Space is measured by counting the maximum

memory space required by the algorithm.

25

The complexity of an algorithm f(n) gives the running time

and/or the storage space required by the algorithm in terms of

n as the size of input data.

Space Complexity

Space complexity of an algorithm represents the amount of

memory space required by the algorithm in its life cycle. The

space required by an algorithm is equal to the sum of the

following two components −

A fixed part that is a space required to store certain data and

variables, that are independent of the size of the problem. For

example, simple variables and constants used, program size,

etc.

A variable part is a space required by variables, whose size

depends on the size of the problem. For example, dynamic

memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I),

where C is the fixed part and S(I) is the variable part of the

algorithm, which depends on instance characteristic I.

Following is a simple example that tries to explain the concept

−

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

26

Step 3 - Stop

Here we have three variables A, B, and C and one constant.

Hence S(P) = 1 + 3. Now, space depends on data types of given

variables and constant types and it will be multiplied

accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time

required by the algorithm to run to completion. Time

requirements can be defined as a numerical function T(n),

where T(n) can be measured as the number of steps, provided

each step consumes constant time.

For example, addition of two n-bit integers takes n steps.

Consequently, the total computational time is T(n) = c ∗ n,

where c is the time taken for the addition of two bits. Here, we

observe that T(n) grows linearly as the input size increases.

Data Structures - Asymptotic Analysis

Asymptotic analysis of an algorithm refers to defining the

mathematical boundation/framing of its run-time performance.

Using asymptotic analysis, we can very well conclude the best

case, average case, and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the

algorithm, it is concluded to work in a constant time. Other than

the "input" all other factors are considered constant.

27

Asymptotic analysis refers to computing the running time of

any operation in mathematical units of computation. For

example, the running time of one operation is computed as f(n)

and may be for another operation it is computed as g(n2). This

means the first operation running time will increase linearly

with the increase in n and the running time of the second

operation will increase exponentially when n increases.

Similarly, the running time of both operations will be nearly the

same if n is significantly small.

Usually, the time required by an algorithm falls under three

types −

Best Case − Minimum time required for program execution.

Average Case − Average time required for program execution.

Worst Case − Maximum time required for program execution.

Asymptotic Notations

Following are the commonly used asymptotic notations to

calculate the running time complexity of an algorithm.

Ο Notation

Ω Notation

θ Notation

Big Oh Notation, Ο

28

The notation Ο(n) is the formal way to express the upper bound

of an algorithm's running time. It measures the worst case time

complexity or the longest amount of time an algorithm can

possibly take to complete.

Big O Notation

For example, for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n)

for all n > n0. }

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound

of an algorithm's running time. It measures the best case time

complexity or the best amount of time an algorithm can

possibly take to complete.

Omega Notation

For example, for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n)

for all n > n0. }

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower

bound and the upper bound of an algorithm's running time. It is

represented as follows −

Theta Notation

